
Journal of Machine Learning Research 4 (2003) 415-430 Submitted 5/01; Published 8/03

ILP: A Short Look Back and a Longer Look Forward

David Page PAGE@BIOSTAT.WISC.EDU

Dept. of Biostatistics and Medical Informatics
and Dept. of Computer Sciences
University of Wisconsin
1300 University Ave., Rm 5795 Medical Sciences
Madison, WI 53706, USA

Ashwin Srinivasan ASHWIN@COMLAB.OX.AC.UK

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK

Position Paper

Editors: James Cussens and Alan M. Frisch

Abstract

Inductive logic programming (ILP) is built on a foundation laid by research in machine learning
and computational logic. Armed with this strong foundation, ILP has been applied to important
and interesting problems in the life sciences, engineering and the arts. This paper begins by briefly
reviewing some example applications, in order to illustrate the benefits of ILP. In turn, the appli-
cations have brought into focus the need for more research into specific topics. We enumerate and
elaborate five of these: (1) novel search methods; (2) incorporation of explicit probabilities; (3)
incorporation of special-purpose reasoners; (4) parallel execution using commodity components;
and (5) enhanced human interaction. It is our hypothesis that progress in each of these areas can
greatly improve the contributions that can be made with ILP; and that, with assistance from research
workers in other areas, significant progress in each of these areas is possible.

1. Introduction

Inductive logic programming (ILP) has its foundations in computational logic, including logic pro-
gramming, knowledge representation and reasoning, and automated theorem proving. These foun-
dations go beyond the obvious basis in definite clause logic and SLD-resolution. In addition ILP
has utilized such theoretical results from computational logic as Lee’s Subsumption Theorem (Lee,
1967), Gottlob’s Lemma linking implication and subsumption (Gottlob, 1987), Marcinkowski and
Pacholski’s result on the undecidability of implication between definite clauses (Marcinkowski and
Pacholski, 1992), and many others. In addition to utilizing such theoretical results, ILP depends
crucially on important advances in logic programming implementations. For example, many of the
applications summarized in the next section were possible only because of fast deductive inference
based on indexing, partial compilation, etc. as embodied in the best current Prolog implementations.
Finally, research in computational logic has yielded numerous important lessons about knowledge
representation in logic that have formed the basis for applications. Just as one example, definite
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clause grammars are central to several ILP applications within both natural language processing
and bioinformatics.

In his famous address in 1900 to the International Congress of Mathematicians in Paris, David
Hilbert commenced thus (from the English translation in Hilbert, 1902):

Who of us would not be glad to lift the veil behind which the future lies hidden; to cast
a glance at the next advances of our science . . . We know that every age has its own
problems, which the following age either solves or casts aside as profitless and replaces
by new ones. If we would obtain an idea of the probable development of mathematical
knowledge in the immediate future, we must let the unsettled questions pass before our
minds and look over the problems which the science of today sets and whose solution
we expect from the future.

In a far more humble setting, we present here what we believe to be some pressing issues that
have arisen from the most challenging ILP applications of today. These are:

1. The development of novel search methods;

2. Techniques for incorporating explicit probabilities into ILP;

3. The use of special-purpose reasoners in ILP;

4. Techniques for parallel execution using commodity components; and

5. Enhancing human-computer interaction to make ILP systems true collaborators with human
experts.

It is our belief that adequate solutions to the concomitant problems posed by these issues will greatly
improve the quality and type of assistance that can be rendered by ILP systems. Further, we fully
expect such solutions are obtainable in the future, with the assistance of research workers from
machine learning, algorithm development, computational logic, and experimental psychology.

The rest of the paper is organised as follows. Section 2 gives a brief review of some of the
application areas that have motivated the research issues enumerated above. Each of these issues is
examined in greater detail in Sections 3–7. Section 8 concludes the paper.

2. Challenging Application Areas for ILP

One of the most important application domains for machine learning in general is bioinformatics,
broadly interpreted. This domain is particularly attractive for (1) its obvious importance to society,
and (2) the plethora of large and growing data sets. Data sets obviously include the newly completed
and available DNA sequences forC. elegans(nematode),Drosophila(fruitfly), and (depending on
one’s definitions of “completed” and “available”) man. But other data sets include gene expression
data (recording the degree to which various genes are expressed as protein in a tissue sample), bio-
activity data on potential drug molecules, x-ray crystallography and NMR data on protein structure,
and data from novel techniques in proteomics.Applications within bioinformatics include protein
structure prediction (Muggleton et al., 1992; Turcotte et al., 1998), mutagenicity prediction (King
et al., 1996), and pharmacophore discovery1 (Marchand-Geneste et al., 2002; Finn et al., 1998).

1. The goal of pharmacphore discovery is to identify the 3D substructure responsible for drug activity, which can then
be used to guide the search for new drugs with similar activity.
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Figure 1: ACE inhibitor number 1 with highlighted 4-point pharmacophore.

ILP is particularly well-suited for bioinformatics tasks because of its abilities to take into account
background knowledge and work directly with structured data. For example, the following is a
potential pharmacophore for ACE inhibition (a form of hypertension medication), where the spatial
relationships are described through pairwise distances.2

Molecule A is an ACE inhibitor if:
molecule A contains a zinc binding site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 +/- .75 Angstroms, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 +/- .75 Angstroms, and
the distance between C and D is 2.1 +/- .75 Angstroms, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 +/- .75 Angstroms, and
the distance between C and E is 3.1 +/- .75 Angstroms, and
the distance between D and E is 3.8 +/- .75 Angstroms.

Figures 1 and 2 show two different ACE inhibitors with the parts of the pharmacophore highlighted
and labeled. The preceding rule was automatically translated directly from logic. It illustrates
another strength of ILP, in that logical rules are easily translated into English. If the vocabulary
for the rules is meaningful to the domain experts, as in this case, then ILP discoveries are directly
comprehensible to humans, at least to domain experts.

2. Hydrogen acceptors are atoms with a weak negative charge. Ordinarily, zinc-binding would be irrelevant; it is
relevant here because ACE is one of several proteins in the body that typically contains an associated zinc ion. The
error tolerance on distances was fixed to 0.75 Angstroms based on the recommendation of a domain expert; multiple
possible error tolerances can be incorporated into the search if that is desired instead. 1.0 and 0.75 are typical
tolerances preferred by chemists.
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Figure 2: ACE inhibitor number 2 with highlighted 4-point pharmacophore.

Note that the features (acceptors and zinc-binding) are related to one another by distances, and
a typical molecule may have many atoms or groups that potentially could play the role of a given
feature in the rule. Hence just testing whether a molecule satisfies a rule is itself a constraint-
satisfaction problem, where features are variables and distances are constraints. For this reason,
ordinary feature based learners (e.g., decision tree algorithms), cannot learn rules of this form unless
each possible rule is itself encoded as a single feature. But the problem with that approach is that it
leads to millions of features for a typical set of molecules.

A very different type of domain for machine learning is natural language processing (NLP).
This domain also includes a wide variety of tasks such as part-of-speech tagging, grammar learning,
information retrieval, and information extraction. Arguably, natural language translation (at least,
very rough-cut translation) is now a reality—witness, for example, the widespread use of Altavista’s
Babelfish (http://babel.altavista.com/). Machine learning techniques are aiding in the construction
of information extraction engines that fill database entries from document abstracts or web pages
(e.g., Craven and Kumlien, 1999). NLP became a major application focus for ILP in particular
with the ESPRIT project ILP2. A strength of ILP for NLP is that grammars can be represented as
logic programs, so the same algorithms used to learn pharmacophores can be applied to learning
grammars or portions of grammars.

A third popular and challenging application area for machine learning is knowledge discov-
ery from large databases with rich data formats, which might contain for example satellite images,
audio recordings, movie files, etc. While Dˇzeroski (1996) has shown how ILP applies very natu-
rally to knowledge discovery from ordinary relational databases, advances are needed to deal with
multimedia databases.

418



ILP: A SHORT LOOK BACK AND A LONGERLOOK FORWARD

ILP has advantages over other machine learning techniques for all of the preceding application
areas. Nevertheless, these applications also highlight the following shortcomings of present ILP
technology:

• Techniques such as bigrams and trigrams, or the more complex hidden Markov models, Bayes
nets and dynamic Bayes nets, can expressly represent the probabilities inherent in tasks such
as part-of-speech tagging, alignment of proteins, robot maneuvering, etc. Few ILP systems
need to have such capabilities.

• ILP systems have higher time and space requirements than other machine learning systems,
making it difficult to apply them to large data sets. Novel search algorithms and parallel
processing need to be explored.

• ILP works well when data and background knowledge are cleanly expressible in first-order
logic. But what can be done when databases contain images, audio, movies, etc.? ILP needs
to learn lessons from constraint logic programming regarding the incorporation of special-
purpose techniques for handling special data formats.

• In scientific knowledge discovery, for example in the domain of bioinformatics, it would be
beneficial if ILP systems could collaborate with scientists rather than merely running in batch
mode. If ILP does not take this step, other forms of collaborative scientific assistants will be
developed, supplanting ILP’s position within these domains.

The directions for further research that are discussed in the following sections address these short-
comings, in the same order.

3. Improved/Novel Search Methods

Most ILP algorithms search a lattice of clauses ordered by subsumption. They seek a clause that
maximizes some function of the size of the clause and coverage of the clause, i.e. the numbers of
positive and negative examples entailed by the clause together with the background theory. Depend-
ing upon how they search this lattice, these ILP algorithms are classified as either specific-to-general
(based on least general generalization) or general-to-specific (based on refinement). Algorithms are
further classified by whether they perform a greedy search, beam search, admissible search, etc.
But a large space of possible algorithms still remains unexplored—algorithms that are neither top-
down nor bottom-up, nor even necessarily deterministic. For other challenging logic or artificial
intelligence tasks outside ILP, great progress has been made in the development of novel search
stategies. The best-known case is satisfiability, where GSAT (Selman et al., 1992) made a substan-
tial improvement over Davis-Putnam, then WalkSAT (Selman et al., 1994) improved upon GSAT,
and where more recently novel versions of Davis-Putnam with rapid random restarts have outper-
formed WalkSAT (Gomes et al., 2000). Consequently, a promising research direction is to apply
novel search strategies such as these to ILP.

ILP algorithms face not one but two difficult search problems. In addition to the search of
the lattice of clauses, already described, simply testing the coverage of a clause involves repeated
searches for proofs—“if I assume this clause is true, does a proof exist for that example?” Some
work on stochastic search in ILP already has been done, and it addressed this latter search problem.
Sebag and Rouveirol (1997) employed stochastic matching, or theorem proving, and obtained effi-
ciency improvements over Progol in the prediction of mutagenicity, without sacrificing predictive
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accuracy or comprehensibility. More recently, Giordana et al. (2000) and Botta et al. (2003) have
pursued this approach further, continuing to show the benefits of replacing deterministic matching
with stochastic matching (Giordana et al., 2000; Botta et al., 2003). But at the center of ILP is
the search of the clause lattice. Genetic algorithms have been employed for searching this lattice,
but more work on novel search strategies is needed. The remainder of this section briefly outlines
several directions for such research.

First, one can easily imagine variants of GSAT and WalkSAT tailored to search a lattice of
clauses instead of truth assignments, trying to maximize consistency with a data set rather than
clauses satisfied in a Boolean CNF formula. A natural ILP variant of GSAT performs as follows.
It first draws a random first-order definite clause, rather than a random truth assignment. Instead of
“flipping” the truth assignments of individual variables, its moves involve adding or deleting literals
in the clause. The ILP variant of WalkSAT is a very similar algorithm. The difference is that with
some probabilityp the algorithm makes a random move—it randomly selects an efficacious literal
to add or delete. An efficacious addition is a literal that, when added, will cause the clause not to
cover some negative example; an efficacious deletion is a literal that, when deleted, will permit the
clause to cover a previously-uncovered positive example.

We have conducted preliminary experiments using an implementation of these algorithms within
the Aleph system. On an artificial domain consisting of random graphs, we find that ILP-WalkSAT
outperforms ILP-GSAT. Both algorithms perform better than a routine greedy search, and find useful
clauses in cases where it is intractable to use a complete search.

These results are promising, but much more research can be done. First, the procedures de-
scribed still search for one clause at a time. To learn multiple clauses, they employ the standard
greedy-covering heuristic. Can stochastic searches be formulated that search the space of entire
theoriesrather than clauses? Second, in GSAT or WalkSAT scoring a given truth assignment is very
fast. In contrast, scoring a clause can be much more time consuming because it involves repeated
theorem proving. Therefore, it might be beneficial to combine the ILP GSAT and WalkSAT algo-
rithms with the stochastic theorem proving mentioned earlier. Third, the number of literals that can
be built from a language often is infinite, so we cannot test all possible additions of a literal. Our
approach has been to base any given iteration of the algorithm on a “bottom clause” built from a
“seed example,” based on the manner in which the ILP system Progol (Muggleton, 1995) constrains
its search space. Fourth, other types of stochastic search could be tried, such as simulated annealing.

We have noted already that Davis-Putnam has been improved substantially through alternative
settings of parameters andrapid random restarts(RRR) (Gomes et al., 2000). This success suggests
that RRR might also be used in ILP to improve refinement-based searches. A start in this direction
has been made very recently, and the results indicate that refinement-based search with RRR is
indeed a promising approach (Zelezny et al., 2002). Much more research is needed to determine
appropriate parameters for such a search, including how rapidly the restarts should occur.

4. Probabilistic Inference: ILP and Bayes Nets

Bayesian networks have largely supplanted traditional rule-based expert systems. Why? Because
in task after task artificial intelligence practitioners have realized that probabilities are central. For
example, in medical diagnosis few universally true rules exist and few entirely accurate laboratory
experiments are available. Instead, probabilities are needed to model the task’s inherent uncertainty.
Bayes nets are designed specifically to model probability distributions and to reason about these dis-
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tributions accurately and (in some cases) efficiently. Consequently, in many tasks including medical
diagnosis (Heckerman et al., 1992), Bayes nets have been found to be superior to rule-based sys-
tems. Interestingly, inductive inference, or machine learning, has turned out to be a very significant
component of Bayes net reasoning. Inductive inference from data is particularly important for de-
veloping or adjusting the conditional probability tables for various network nodes, but also is used
in some cases even for developing or modifying the structure of the network itself.

In spite of these advantages, a Bayes net is less expressive than first-order logic, on a par with
propositional logic instead. Consequently, while a Bayes net is a graphical representation, it can-
not represent relational structures. The only relationships captured by the graphs are conditional
dependencies among variables. This failure to capture other relational information is particularly
troublesome when using the Bayes net representation in learning. For a concrete illustration, con-
sider the task of pharmacophore discovery. It would be desirable to learn probabilistic predictors,
e.g., what is the probability that a given structural change to the molecule fluoxetine (Prozac) will
yield an equally effective anti-depressant (specifically, serotonin reuptake inhibitor)? To build such
a probabilistic predictor, we might choose to learn a Bayes net from data on serotonin reuptake
inhibitors. Unfortunately, while a Bayes net can capture the probabilistic information, it cannot
capture the structural properties of a molecule that are predictive of biological activity.

The inability of Bayes nets to capture relational structure is well known and has led to the re-
cent extension toprobabilistic relational models(PRMs) and the study of learning algorithms for
such models (Getoor et al., 2001). Probabilistic relational models are an extension of Bayes nets
to multiple relational tables, as in a relational database. Because so many real-world data mining
tasks are relational in nature, and hence require multiple relational tables, the power of PRMs has
immediately been widely recognized. It is worth bearing in mind, nevertheless, that PRMs fall short
of the expressivity of first-order logic, or even of Datalog, and that the learning algorithms are very
different from those employed within ILP. An interesting alternative for ILP researchers to examine
is learning clauses with probabilities attached. It will be important in particular to examine how such
representations and learning algorithms compare with PRMs and PRM learning algorithms. It may
well be the case that these closely related research directions can benefit greatly from one another.
Several candidate probabilistic logic representations have been proposed and include probabilistic
logic programs, Bayesian logic programs, stochastic logic programs, and probabilistic constraint
logic programs; Cussens (1999) provides a nice survey of these representations. Study already has
begun into algorithms and applications for learning stochastic logic programs (Muggleton, 2000)
and Bayesian logic programs (Kersting and Raedt, 2001), and these are exciting areas for further
work. The first-order representations closest to Bayes nets are the representation of Ngo and Had-
dawy (1997, 1995) and the logic programs of Kersting et al. (2000). The remainder of this section
points to approaches for, and potential benefits of, learning clauses in the representation of Ngo and
Haddawy or a similar representation.

Clauses in the representation of Ngo and Haddawy may contain random variables as well as
ordinary logical variables. A clause may contain at most one random variable in any one literal, and
random variables may appear in body literals only if a random variable appears in the head. Finally,
such a clause also has a Bayes net fragment attached, which may be thought of as a constraint. This
fragment has a very specific form. It is a directed graph of node depth two (edge depth one), with all
the random variables from the clause body as parents of the random variable from the clause head.3

3. This is not exactly the definition provided by Ngo and Haddawy, but it is an equivalent one. Readers interested in
deductive inference with this representation are encouraged to see their work (Ngo and Haddawy, 1997, 1995).
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distance(Molecule,Hydrophobe,Nitrogen,D1),
contains_hydrogen_acceptor(Molecule,Acceptor),
contains_basic_nitrogen(Molecule,Nitrogen),

distance(Molecule,Hydrophobe,Acceptor,D2),

contains_hydrophobe(Molecule,Hydrophobe),
drug(Molecule,Activity_Level):-

Activity_Level

D2D1 D3

distance(Molecule,Nitrogen,Acceptor,D3).

Figure 3: A clause with a Bayes net fragment attached (conditional probability tablenot included).
The random variables areActivity Level, D1, D2, andD3. Rather than using a hard range
in which the values ofD1, D2, andD3 must fall, as the pharmacophores described earlier,
this new representation allows us to describe a probability distribution overActivity Level
in terms of the values ofD1, D2, andD3. For example, we might assign higher probabil-
ities to highActivity LevelasD1 gets closer to 3 Angstroms from either above or below.
The conditional probability table itself might be a linear regression model, i.e. a linear
function ofD1, D2, andD3 with some fixed variance assumed, or it might be a discretized
model, or other.

Figure 3 provides an example of such a clause as might be learned in pharmacophore discovery
(conditional probability table not shown). This clause enables us to specify, through a conditional
probability table, how the probability of a molecule being active depends on the particular values
assigned to the distance variablesD1, D2, andD3. In general, the role of the added constraint in
the form of a Bayes net fragment is to define a conditional probability distribution over the random
variable in the head, conditional on the values of the random variables in the body. When multiple
such clauses are chained together during inference, a larger Bayes net is formed that defines a joint
probability distribution over the random variables.

We conjecture that existing ILP algorithms can effectively learn clauses of this form with the
following modification. For each clause constructed by the ILP algorithm, collect the positive ex-
amples covered by the clause. Each positive example provides a value for the random variable in
the head of the clause, and because the example is covered, the example together with the back-
ground knowledge provides values for the random variables in the body. These values, over all the
covered positive examples, can be used as the data for constructing the conditional probability ta-
ble (conditional probability table) that accompanies the attached Bayes net fragment. When all the
random variables are discrete, a simple, standard method exists for constructing conditional prob-
ability tables from such data and is described nicely by Heckerman (1995). If some or all of the
random variables are continuous, then under certain assumptions again simple, standard methods
exist. For example, under one set of assumptions linear regression can be used, and under another
naive Bayes can be used. In fact, the work by Srinivasan and Camacho (1999) on predicting levels
of mutagenicity and the work by Craven and Slattery (1998) and by Craven and Kumlien (1999)
on information extraction can be seen as special cases of this proposed approach, employing linear
regression and naive Bayes, respectively.
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While the approach just outlined appears promising, of course it is not the only possible ap-
proach and may not turn out to be the best. More generally, ILP and Bayes net learning are largely
orthogonal. The former handles relational domains well, while the latter handles probabilities well.
And both Bayes nets and ILP have been applied successfully to a variety of tasks. Therefore, it is
reasonable to hypothesize the existence and utility of a representation and learning algorithms that
effectively capture the advantages of both Bayes net learning and ILP. The space of such represen-
tations and algorithms is large, so combining Bayes net learning and ILP is an area of research that
is not only promising but also wide open for further work.

5. Special-purpose Reasoning Mechanisms

One of the well-documented success stories of computational logic is constraint logic programming.
And one of the reasons for this success is the ability to integrate logic and special purpose reasoners
or constraint solvers. Many ILP applications could benefit from the incorporation of special-purpose
reasoning mechanisms. Indeed, the approach advocated in Section 3.1 to incorporating probabilities
in ILP can be thought of as invoking special purpose reasoners to construct constraints in the form
of Bayes net fragments. The work by Srinivasan and Camacho mentioned there uses linear regres-
sion to construct a constraint, while the work by Craven and Slattery uses naive Bayes techniques to
construct a constraint. The point that is crucial to notice is that ILP requires a “constraint construc-
tor,” such as linear regression, in addition to the constraint solver required during deduction. Let’s
now turn to consideration of tasks where other types of constraint generators might be useful.

Consider the general area of knowledge discovery from databases. Suppose we take the standard
logical interpretation of a database, where each relation is a predicate, and each tuple in the relation
is a ground atomic formula built from that predicate. Dˇzeroski and Lavraˇc (2001) show how ILP
techniques are very naturally suited to this task, if we have an “ordinary” relational database. But
now suppose the database contains some form of complex objects, such as images. Simple logical
similarities may not capture the important common features across a set of images. Instead, special-
purpose image processing techniques may be required, such as those described by Leung and Malik
(2001) and by Leung et al. (1998). In addition to simple images, special-purpose constraint con-
structors might be required when applying ILP to movie (e.g. MPEG) or audio (e.g. MP3) data,
or other data forms that are becoming ever more commonplace with the growth of multimedia. For
example, a fan of the Bach, Mozart, and Brian Wilson would love to be able to enter her/his fa-
vorite pieces, have ILP with a constraint generator build rules to describe these favorites, and have
the rules suggest other pieces or composers s/he should access. As multimedia data becomes more
commonplace, ILP can remain applicable only if it is able to incorporate special- purpose constraint
generators.

Frisch and Page (1995) show that the ordinary subsumption ordering over formulas generalizes
quite naturally to incorporate constraints. Nevertheless, that work does not address some of the
hardest issues, such as how to ensure the efficiency of inductive learning systems based on this
ordering and how to design the right types of constraint generators. These questions require much
further research involving real-world applications such as multimedia databases.

One final point about special purpose reasoners in ILP is worth making. Constructing a con-
straint may be thought of as inventing a predicate. Predicate invention within ILP has a long history
(Muggleton and Buntine, 1988; Wirth and O’Rorke, 1991; Zelle and Mooney, 1993; Muggleton,
1994). General techniques for predicate invention encounter the problem that the space of “in-
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ventable” predicates is unconstrained, and hence allowing predicate invention is roughly equivalent
to removing all bias from inductive learning. Although removing bias may sound at first to be a
good idea, inductive learning in fact requires bias (Mitchell, 1980, 1982). Special purpose tech-
niques for constraint construction appear to make it possible to perform predicate invention in way
that is limited enough to be effective (Srinivasan and Camacho, 1999; Craven and Kumlien, 1999).

6. Parallel Execution

Although ILP has numerous advantages over other types of machine learning, including advan-
tages mentioned at the start of the previous section, it has two particularly notable disadvantages—
excessive run time and space requirements. Fortunately for ILP, at the same time that larger ap-
plications are highlighting these disadvantages, parallel processing “on the cheap” is becoming
widespread. Most notable is the widespread use of “Beowulf clusters” (Becker et al., 1995) and of
“Condor pools” (Litzkow et al., 1988), arrangements that connect tens, hundreds, or even thousands
of personal computers or workstations to permit parallel processing. Admittedly, parallel processing
cannot change the order of the time or space complexity of an algorithm. But most ILP systems al-
ready use broad constraints, such as maximum clause size, to hold down exponential terms. Rather,
the need is to beat back the large constants brought in by large real-world applications.

Skillicorn and Wang (2001) recently developed a parallel implementation of Progol under the
Bulk Synchronous Parallel model and claim superlinear speedup from this implementation. The
remainder of this section describes how large-scale parallelism can be achieved very simply in a
complete general-to-specific search ILP algorithm. From this discussion, one can imagine more
interesting approaches for other types of general-to-specific such as greedy search.

The ideal in parallel processing is a decrease in processing time that is a linear function, with
a slope near 1, of the number of processors used. (In some rare cases it is possible to achieve su-
perlinear speed-up.) The barriers to achieving the ideal are (1) overhead in communication among
processes and (2) competition for resources among processes. Therefore, a good parallel scheme is
one where the processes are relatively independent of one another and hence require little commu-
nication or resource sharing. The key observation in the design of the parallel ILP scheme is that
two competing hypotheses can be tested against the data completely independently of one another.
Therefore the approach advocated here is to distribute the hypothesis space among different proces-
sors for testing against the data. These processors need not communicate with one another during
testing, and they need not write to a shared memory space.

In more detail, for complete search a parallel ILP scheme can employ a master-worker design,
where the master assigns different segments of the hypothesis space to workers that then test hy-
potheses against the data. Workers communicate back to the master all hypotheses achieving a
pre-selected minimum valuation score (e.g. 95% accuracy) on the data. As workers become free,
the master continues to assign new segments of the space until the entire space has been explored.
The only architectural requirements for this approach are (1) a mechanism for communication be-
tween the master and each worker and (2) read access for each worker to the data. Because data do
not change during a run, this scheme can easily operate under either a shared memory or message
passing architecture; in the latter, we incur a one-time overhead cost of initially communicating
the data to each worker. The only remaining overhead, on either architecture, consists of the time
spent by the master and time for master-worker communication. In “needle in a haystack” domains,
which are the motivation for complete search, one expects very few hypotheses to be communicated
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from workers to the master, so overhead for the communication of results will be low. If it also is
possible for the master to rapidly segment the hypothesis space in such a way that the segments can
be communicated to the workers succinctly, then overall overhead will be low and the ideal of linear
speed-up can be realized. One implementation of this approach has, in fact, already been tested on
the pharmacophore discovery task mentioned in the introduction (Kamal et al., 2001).

Undoubtedly there are a variety of other complete search, or exact, parallel schemes that can be
implemented, and the investigation of such schemes is a key area for further research. For all such
schemes, two crucial questions should be answered. First, under what conditions is the new parallel
scheme faster than existing ones? Second, are the solutions returned by the parallel complete search
significantly better than those returned by a stochastic search? This second question brings us back
to our second research direction, that of stochastic ILP algorithms. Of course, it is not necessary
to choose between stochastic and parallel algorithms. The stochastic algorithms proposed earlier
can themselves be implemented on a parallel processor, in the simplest case by replacing restarts by
independent searches running at the same time. How will the results of parallel stochastic searches
compare with those of parallel complete searches, if both searches are provided with the same
number of processors and the same amount of time?

7. Interaction with Human Experts

To discover new knowledge from data in fields such as telecommunications, molecular biology, or
pharmaceuticals, it would be beneficial if a machine learning system and a human expert could act
as a team, taking advantage of the computer’s speed and the expert’s knowledge and skills. ILP
systems have three properties that make them natural candidates for collaborators with humans in
knowledge discovery:

Declarative Background Knowledge ILP systems can make use of declarative background knowl-
edge about a domain in order to construct hypotheses. Thus a collaboration can begin with
a domain expert providing the learning system with general knowledge that might be use-
ful in the construction of hypotheses. Most ILP systems also permit the expert to define the
hypothesis space using additional background knowledge, in the form of adeclarative bias.

Natural descriptions of structured examples Feature-based learning systems require the user to
begin by creating features to describe the examples. Because many knowledge discovery
tasks involve complex structured examples, such as molecules, users are forced to choose
only composite features such as molecular weight—thereby losing information—or to invest
substantial effort in building features that can capture structure (for a discussion in the context
of molecules, see the work of Srinivasan et al., 1996). ILP systems allow a structured example
to be described naturally in terms of the objects that compose it, together with relations among
those objects. The 2-dimensional structure of a molecule can be represented directly using its
atoms as the objects and bonds as the relations; 3-dimensional structure can be captured by
adding distance relations.

Human-Comprehensible Output ILP systems share with propositional–logic learners the ability
to present a user with declarative, comprehensible rules as output. Some ILP systems can
return rules in English along with visual aids. For example, the pharmacophore description
and corresponding figures in Section 2 were generated automatically by Progol.
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Despite the useful properties just outlined, ILP systems—like other machine learning systems—
have a number of shortcomings as collaborators with humans in knowledge discovery. One short-
coming is that most ILP systems return a single theory based on heuristics, thus casting away many
clauses that might be interesting to a domain expert. But the only currently existing alternative is
the version space approach, which has unpalatable properties that include inefficiency, poor noise
tolerance, and a propensity to overwhelm users with too large a space of possible hypotheses. Sec-
ond, ILP systems cannot respond to a human expert’s questions in the way a human collaborator
would. They operate in simple batch mode, taking a data set as input, and returning a hypothe-
sis on a take-it-or-leave-it basis. Third, ILP systems do not question the input data in the way a
human collaborator would, spotting surprising (and hence possibly erroneous) data points and rais-
ing questions about them. Some ILP systems will flag mutually inconsistent data points but to our
knowledge none goes beyond this. Fourth, although a human expert can provide knowledge-rich
forms of hypothesis justification, for example relating a new hypothesis to existing beliefs, ILP
systems merely provide accuracy estimates as the sole justification.

To build upon ILP’s strengths as a technology for human-computer collaboration in knowledge
discovery, the above shortcomings should be addressed. ILP systems should be extended to display
the following capabilities.

1. Maintain and summarize alternative hypotheses that explain or describe the data, rather than
providing a single answer based on a general-purpose heuristic.

2. Propose to human experts practical sequences of experiments to refine or distinguish between
competing hypotheses. Significant advances in the automatic proposal of experiments by an
ILP system have been made recently by Bryant et al. (2001).

3. Provide non-numerical justification for hypotheses, such as relating them to prior beliefs or
illustrative examples (in addition to providing numerical accuracy estimates).

4. Answer an expert’s questions regarding hypotheses.

5. Consult the expert regarding anomalies or surprises in the data.

In fact, the other four directions already discussed in this paper go a long way toward capabilities
1 and 3. Both stochastic search and parallel search technologies make it possible to find a potentially
large number of alternative hypotheses more efficiently, thus helping to provide capability 1. The
ability to provide probability distributions over the bindings for variables in competing hypotheses
can potentially provide much more information about these hypotheses. This additional information
can be useful in justifying one hypothesis over another. As human experts look more closely at
hypotheses, and ask more details about how they fit the data (beyond a simple accuracy number),
again these probability distributions can provide further insight.

Work relevant to capability 2 for ILP has been done recently with a goal very different from
human-computer interaction. Bryant et al. (2001) have developed a system to automatically propose
and executeexperiments related to yeast metabolism. The system contains an ILP system interfaced
with a robot to perform experiments. Each experiment tests whether a particular “knock-out” strain
of yeast will grow on a particular medium. The “knock-outs” are variants of yeast, each with a
single gene altered so that its functionality is lost to the organism. The goal of this work is to
automatically induce a logical model for a portion of yeast metabolism. Although the spirit of this
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work is virtually the opposite of human-computer interaction, the approach to experiment proposal
is relevant for human-computer interaction.

Addressing human-computer interface issues obviously requires a variety of logical and artificial
intelligence expertise. Thus contributions from other areas of artificial intelligence and computa-
tional logic, such as the study of logical agents, will be vital.

8. Conclusions

ILP has attracted great interest within the machine learning and artificial intelligence communi-
ties at large because of its logical foundations, its ability to utilize background knowledge and
structured data representations, and its comprehensible results. But most of all, the interest has
come from ILP’s application successes. Nevertheless, ILP needs further advances to maintain this
record of success, and these advances require further contributions from other areas of computa-
tional logic. System builders and parallel implementation experts are needed if the ILP systems of
the next decade are to scale up to the next generation of data sets, such as those being produced by
Affymetrix’s gene expression microarrays and Celera’s shotgun approach to DNA sequencing. Re-
search workers on probability and logic are required if ILP is to avoid being supplanted by the next
generation of extended Bayes net learning systems. Experts on constraint satisfaction and constraint
logic programming have the skills necessary to bring successful stochastic search techniques to ILP
and to allow ILP techniques to extend to multimedia databases. Paraphrasing the closing words of
Hilbert in his 1900 address: that ILP may completely fulfil its high mission, may the next decade
bring gifted masters and many zealous and enthusiastic disciples!
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