
Clausal Temporal Resolution

MICHAEL FISHER and CLARE DIXON
Manchester Metropolitan University
and
MARTIN PEIM
Victoria University of Manchester

In this article, we examine how clausal resolution can be applied to a specific, but widely used,
nonclassical logic, namely discrete linear temporal logic. Thus, we first define a normal form for
temporal formulae and show how arbitrary temporal formulae can be translated into the normal
form, while preserving satisfiability. We then introduce novel resolution rules that can be applied
to formulae in this normal form, provide a range of examples, and examine the correctness and
complexity of this approach. Finally, we describe related work and future developments concerning
this work.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—Temporal Logic; I.2.3 [Artificial Intelligence]: Deduction and Theorem Prov-
ing—Resolution

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Theorem proving, resolution, temporal logic

1. INTRODUCTION

Temporal logic is a nonclassical logic that was originally developed in order to
represent tense in natural language [Prior 1967]. More recently, it has achieved
a significant role in the formal specification and verification of concurrent and
distributed systems [Pnueli 1977]. It is commonly recognized that such reactive
systems [Harel and Pnueli 1985] represent one of the most important classes of
systems in computer science, and, although analysis of these systems is difficult,
it has been successfully tackled using modal and temporal logics [Pnueli 1977;
Emerson 1990; Stirling 1992]. In particular, a number of useful concepts, such
as safety, liveness, and fairness can be formally, and concisely, specified using
temporal logics [Manna and Pnueli 1992; Emerson 1990].

This work was partially supported by a SERC research grant GR/H/44646, an EPSRC PhD Stu-
dentship and EPSRC Research Grants GR/K57282 and GR/L87491.
Authors’ addresses: M. Fisher and C. Dixon, Manchester Metropolitan University, Department
of Computing and Mathematics, Manchester M1 5GD, U.K.; M. Peim, Victoria University of
Manchester, Department of Computer Science, Manchester M13 9PL, U.K.
Permission to make digital/hard copy of all or part of this material without fee for personal or class-
room use provided that the copies are not made or distributed for profit or commercial advantage,
the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.
C© 2001 ACM 1529-3785/01/0100-0012 $5.00

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001, Pages 12–56.

Clausal Temporal Resolution • 13

There are now a wide variety of temporal logics, differing in both their un-
derlying model of time (for example, branching [Emerson and Srinivasan 1988]
versus linear [Pnueli 1977; Manna and Pnueli 1992], and dense [Burgess and
Gurevich 1985] versus discrete) and their intended area of application (for ex-
ample, program specification [Manna and Pnueli 1992], temporal databases
[Tansel 1993], knowledge representation [Artale and Franconi 1999], exe-
cutable temporal logics [Barringer et al. 1996], natural language [Steedman
1997]). In this article we concentrate on a specific but widely used temporal
logic, Propositional Linear Temporal Logic (PLTL), a discrete, linear temporal
logic with finite past and infinite future; see for example Gabbay et al. [1980],
Manna and Pnueli [1992], and Manna and Pnueli [1995].

Given a specification of some computational system in PLTL, we may want
to establish that particular properties of the specification hold. Thus, for con-
current systems, we must often show the absence of deadlock, preservation of
mutual exclusion, etc. (see for example Lamport [1983]). There are two main
approaches to temporal verification that could be used here. If we can gener-
ate a finite-state structure representing all models of the system, then model
checking techniques can be applied [Holzmann 1997]. Model checking involves
establishing that a specific temporal formula is satisfied in the set of models
representing the system. An alternative approach involves direct proof in PLTL.
We consider this second approach, since not only may it be the case that models
are not readily available, but even if they are, many systems we are interested
in have very large, sometimes infinite, state spaces. Importantly, the use of
direct proof methods may obviate the need to traverse all of a possible model
structure.

The development of proof methods for temporal logic have followed three
main approaches: tableaux, automata, and resolution. To show a formula ϕ

valid, each of these methods is applied to the negation of ϕ, i.e., ¬ϕ. Tableaux-
based approaches, for example Wolper [1983] and Gough [1984], attempt to
systematically construct a structure from which a model can be extracted for
¬ϕ. The inability to construct such a model means that ¬ϕ is unsatisfiable, and
therefore ϕ is valid. The use of automata-based approaches depends on the fact
that models for PLTL are simply infinite sequences of choices for truth values
of proposition symbols. That is, an interpretation of a PLTL formula can be
viewed as an infinite word over the alphabet that is the powerset of proposition
symbols. Translations from PLTL into Büchi Automata are given in Sistla et al.
[1987]. If the automaton for ¬ϕ is empty then it accepts no infinite words; hence
¬ϕ is unsatisfiable, and ϕ is valid.

Resolution-based approaches to proof in PLTL fall into two main classes:
nonclausal and clausal. The nonclausal method described in Abadi and Manna
[1985], and extended to first-order temporal logic in Abadi and Manna [1990],
requires a large number of resolution rules, making implementation of this
method difficult. Clausal resolution was suggested as a proof method for clas-
sical logic by Robinson [1965] and was claimed to be machine oriented, i.e.,
suitable to be performed by computer, as it has one rule of inference that may
be applied many times. Again, to show a formula ϕ is valid it is negated, and
¬ϕ is translated into a normal form. The resolution inference rule is applied

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

14 • Michael Fisher et al.

until either no new inferences can be made or a contradiction is obtained. The
generation of a contradiction means that ¬ϕ is unsatisfiable and therefore that
ϕ is valid.

Since clausal resolution is a simple and adaptable proof method for classi-
cal logics with a bank of research into heuristics and strategies, it is perhaps
surprising that few attempts have been made to extend this to temporal logics.
However, discrete temporal logics, such as PLTL, are difficult to reason about
as the interaction between the -operator (meaning always in the future) and
the ❢-operator (meaning in the next moment in time) encodes a form of induc-
tion. Thus, a special temporal resolution rule is needed to handle this. There
have been two previous attempts (known to the authors) at developing clausal
resolution for temporal logics. The method described in Cavalli and Fariñas del
Cerro [1984] is only applicable to a subset of the operators allowed in this article,
i.e., for a less expressive language, and contains a more complex normal form.
The method described in Venkatesh [1986] is the closest to that described in
this article, the main difference being that the reasoning is carried out forward
into the future while our approach involves reasoning backward until a contra-
diction is generated in the initial state. Both of these are discussed further in
Section 8.

The development of the new resolution method described in this article is
motivated not only by our wish to show that such a resolution system can be
both simple and elegant, but also by our view that clausal resolution tech-
niques will, in the future, provide the basis for the most efficient temporal the-
orem provers. While, in previous years, the most successful theorem provers for
modal and temporal logics have been tableau-based (e.g., Horrocks [1998]), the
use of resolution has now been shown to be at least competitive [Hustadt and
Schmidt 1999]. In the classical framework, clausal resolution has led to many
refinements aimed at guiding the search for a refutation, e.g., Chang and Lee
[1973] and Wos et al. [1984]. In addition, several efficient, fast, and widely used
resolution-based theorem provers have been developed, e.g., OTTER [McCune
1994] and SPASS [Weidenbach 1997]. It is our view that a clausal temporal reso-
lution system has the potential to utilize a range of such efficient improvements
developed for both classical and modal resolution.

Thus, our approach is clausal. In particular, we define a very simple (and flex-
ible) normal form, called Separated Normal Form (SNF), that removes all but
a core set of temporal operators. Two types of resolution rule are then defined,
one analogous to the classical resolution rule and the other a new temporal res-
olution rule. However, due to the interaction between the and ❢operators
mentioned previously, the application of the temporal resolution rule is nontriv-
ial, requiring specialized algorithms [Dixon 1996]. It is not our intention here
to analyze experimental results concerning use of the resolution method (which
still remain part of our future work), but simply to provide a logically complete
basis for clausal temporal resolution. While short reports on this work have
appeared previously, notably in Fisher [1991], this article provides the first ex-
position of the full completeness result for this temporal resolution method. In
addition, it provides important properties of the translation into the normal
form, and presents a simpler future-time formulation of the method.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 15

The structure of the article is as follows. In Section 2 we give the syntax and
semantics of PLTL. In Section 3, we define the normal form (SNF), show how
any PLTL formula may be translated into SNF, and consider the properties of
this translation. The resolution rules for formulae in SNF are given in Section 4
while example refutations are provided in Section 5. Issues of correctness and
complexity are considered in Section 6 and Section 7, respectively. Related work
is examined in Section 8, and conclusions and future work are provided in
Section 9.

2. PROPOSITIONAL TEMPORAL LOGIC

Propositional Temporal Logic (PLTL) was originally developed from work on
tense logics [Prior 1967], but has come to prominence through its application in
the specification and verification of both software and hardware [Pnueli 1977].
The particular variety of temporal logic we consider is based on a linear, dis-
crete model of time with finite past and infinite future [Gabbay et al. 1980;
Lichtenstein et al. 1985]. Thus, the temporal operators supplied operate over a
sequence of distinct “moments” in time.

There are several ways to view this logic. One is as a classical propositional
logic augmented with temporal connectives (or operators). An alternative char-
acterization can be given in terms of a multimodal language with two different
modalities, one representing the “next” moment in time, the other representing
all future moments in time (❢and below, respectively).

While it is possible to include past-time operators in the definition of the logic,
we choose not to do so in this exposition, since, as models have a finite past, such
operators add no extra expressive power [Gabbay et al. 1980; Lichtenstein et al.
1985]. However, if the addition of past-time operators makes the expression of
certain properties easier (see, for example Lichtenstein et al. [1985]) they can
be easily incorporated (see Section 3 for more details).

The future-time connectives that we use include ♦ (sometime in the future),
(always in the future), ❢(in the next moment in time), U (until), and W (un-

less, or weak until). To assist readers who may be unfamiliar with the semantics
of the temporal operators we introduce, in the next section, all operators as ba-
sic. Alternatively we could have provided the syntax and semantics of just a
subset of the operators and introduced the remainder as abbreviations.

2.1 Syntax

PLTL formulae are constructed from the following elements:

—A set, P, of propositional symbols.
—Propositional connectives, true, false, ¬, ∨, ∧, and ⇒.
—Temporal connectives, ❢, ♦, , U , and W .

The set of well-formed formulae of PLTL, denoted by WFF, is inductively defined
as the smallest set satisfying the following:

—Any element of P is in WFF.
—true and false are in WFF.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

16 • Michael Fisher et al.

—If A and B are in WFF then so are

¬A A ∨ B A ∧ B A ⇒ B ♦A A AU B AW B ❢A.

A literal is defined as either a proposition symbol or the negation of a proposition
symbol. An eventuality is defined as a formula of the form ♦A.

2.2 Semantics

PLTL is interpreted over discrete, linear structures, for example the natural
numbers, N. A model of PLTL, σ , can be characterized as a sequence of states

σ = s0, s1, s2, s3, . . .

where each state, si, is a set of proposition symbols, representing those propo-
sition symbols which are satisfied in the ith moment in time. As formulae in
PLTL are interpreted at a particular state in the sequence (i.e., at a particular
moment in time), the notation

(σ, i) |= A

denotes the truth (or otherwise) of formula A in the model σ at state index
i ∈ N. For any formula A, model σ , and state index i ∈ N, then either (σ, i) |= A
holds or (σ, i) |= A does not hold, denoted by (σ, i) �|= A. If there is some σ such
that (σ, 0) |= A, then A is said to be satisfiable. If (σ, 0) |= A for all models,
σ , then A is said to be valid and is written |= A. Note that formulae here are
interpreted at s0; this is an alternative, but equivalent, definition to the one
commonly used [Emerson 1990].

The semantics of WFF can now be given, as follows.

(σ, i) |= p iff p ∈ si [where p ∈ P]
(σ, i) |= true
(σ, i) �|= false
(σ, i) |= A ∧ B iff (σ, i) |= A and (σ, i) |= B
(σ, i) |= A ∨ B iff (σ, i) |= A or (σ, i) |= B
(σ, i) |= A ⇒ B iff (σ, i) |= ¬A or (σ, i) |= B
(σ, i) |= ¬A iff (σ, i) �|= A
(σ, i) |= ❢A iff (σ, i + 1) |= A
(σ, i) |= ♦A iff there exists a k ∈ N such that k � i and (σ, k) |= A
(σ, i) |= A iff for all j ∈ N, if j � i then (σ, j) |= A
(σ, i) |= AU B iff there exists a k ∈ N, such that k � i and (σ, k)|=B

and for all j ∈ N, if i � j < k then (σ, j) |= A
(σ, i) |= AW B iff (σ, i) |= AU B or (σ, i) |= A

2.3 Proof Theory

The standard axioms and inference rules for PLTL are as follows (taking
the temporal operators ❢, , and U as primitive and the remaining as
abbreviations—see Section 2.3.1). The axioms are all substitution instances
of the following:

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 17

(1) all classical tautologies,
(2) � (A ⇒ B) ⇒ (A ⇒ B)
(3) � ❢¬A ⇒ ¬ ❢A
(4) � ¬ ❢A ⇒ ❢¬A
(5) � ❢(A ⇒ B) ⇒ (❢A ⇒ ❢B)
(6) � A ⇒ A ∧ ❢ A
(7) � (A ⇒ ❢A) ⇒ (A ⇒ A)
(8) � (AU B) ⇒ ♦B
(9) � (AU B) ⇒ (B ∨ (A ∧ ❢(AU B)))

(10) � (B ∨ (A ∧ ❢(AU B))) ⇒ (AU B)

The inference rules are modus ponens

� A � A ⇒ B
� B

and generalization

� A
� A

.

THEOREM 2.3.1 (SOUNDNESS)[GABBAY ET AL. 1980]. If � A then A is valid in
PLTL.

THEOREM 2.3.2 (COMPLETENESS)[GABBAY ET AL. 1980]. If A is valid in PLTL
then � A.

A complete axiom system for PLTL with future-time temporal operators is
given in Gabbay et al. [1980]. The axiom system presented here is slightly
different from the original due to slight differences in the semantics of the
connectives used. We note that it is difficult to use such an axiom system for
automated theorem proving, as it is not always clear which step should be taken
next to move toward a proof.

2.3.1 Some Equivalences. To assist the understanding of the translation
to the normal form given in Section 3 we list some equivalent PLTL formulae.

❢(A ∧ B) ≡ ❢A ∧ ❢B
¬ ❢A ≡ ❢¬A

A ≡ A ∧ ❢ A
♦A ≡ A ∨ ❢♦A

¬ A ≡ ♦¬A
(AU B) ≡ B ∨ (A ∧ ❢(AU B))
(AU B) ≡ (AW B) ∧ ♦B

¬(AU B) ≡ ¬BW (¬A ∧ ¬B)
(AW B) ≡ B ∨ (A ∧ ❢(AW B))

¬(AW B) ≡ ¬B U (¬A ∧ ¬B)

These are standard and are given in Gough [1984] for example.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

18 • Michael Fisher et al.

3. A NORMAL FORM FOR PROPOSITIONAL TEMPORAL LOGIC

3.1 Separated Normal Form

The resolution method is clausal, and so works on formulae transformed
into a normal form. The normal form, called Separated Normal Form (SNF),
was inspired by (but does not require) Gabbay’s separation result [Gabbay
1987], which states that temporal formulae can be transformed into their past,
present, and future-time components. The normal form we present comprises
formulae that are implications with present-time formulae on the left-hand side
and (present or) future-time formulae on the right-hand side. The transforma-
tion into the normal form reduces most of the temporal operators to a core set
and rewrites formulae to be in a particular form. The transformation into SNF
depends on three main operations: the renaming of complex subformulae; the
removal of temporal operators; and classical style rewrite operations.

Renaming, as suggested in Plaisted and Greenbaum [1986], is a way of pre-
serving the structure of a formula when translating into a normal form in clas-
sical logic. Here, complex subformulae can be replaced by a new proposition
symbol, and the truth value of the new proposition symbol is linked to the sub-
formula it represents at all points in time. The removal of temporal operators
is carried out by using (fixed point) equivalences, for example

p ≡ (p ∧ ❢ p)

that “unwind” the temporal operators to give formulae that need to hold both
now and in the future. Classical rewrite operations allow us to manipulate
formulae into the required form.

To assist in the definition of the normal form we introduce a further (nullary)
connective start that holds only at the beginning of time, i.e.,

(σ, i) |= start iff i = 0.

This allows the general form of the (PLTL-clauses of the) normal form to be
implications. An alternative would be to allow disjunctions of literals as part of
the normal form representing the clauses holding at the beginning of time.

Formulae in SNF are of the general form∧
i

Ai

where each Ai is known as a PLTL-clause (analogous to a “clause” in classical
logic) and must be one of the following forms with each particular ka, kb, lc, ld ,
and l representing a literal.

start ⇒
∨

c

lc (an initial PLTL-clause)

∧
a

ka ⇒ ❢
∨
d

ld (a step PLTL-clause)

∧
b

kb ⇒ ♦l (a sometime PLTL-clause)

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 19

For convenience, the outer and ∧ connectives are usually omitted, and the set
of PLTL-clauses {Ai} is considered. Different variants of the normal form have
been suggested [Fisher 1992; Fisher and Noël 1992; Fisher 1997]. For example,
where PLTL is extended to allow past-time operators the normal form has start
or ❝❝❞❡❢❣❣❣A (where ❝❝❞❡❢❣❣❣means in the previous moment in time and A is a conjunction of
literals) on the left-hand side of the PLTL-clauses and a present-time formula
or eventuality (i.e., ♦l) on the right-hand side. Other versions allow PLTL-
clauses of the form start ⇒ ♦l . These are all expressively equivalent when
models with finite past are considered.

To apply the temporal resolution rule (see Section 4.2), one or more step
PLTL-clauses may need to be combined. Consequently, a variant on SNF called
merged-SNF (SNFm) [Fisher 1991] is also defined. Given a set of PLTL-clauses
in SNF, any PLTL-clause in SNF is also a PLTL-clause in SNFm. Any two
PLTL-clauses in SNFm may be combined to produce a PLTL-clause in SNFm as
follows.

A ⇒ ❢C
B ⇒ ❢D

(A ∧ B) ⇒ ❢(C ∧ D)

Thus, any possible conjunctive combination of SNF PLTL-clauses can be rep-
resented in SNFm.

3.2 Translation into SNF

In this section, we review the translation of an arbitrary PLTL formula into the
normal form (this extends the exposition provided in Fisher [1997]). The proce-
dure uses the technique of renaming complex subformulae by a new proposition
symbol, and the truth value of the new proposition symbol is linked to that of
the renamed formula at all moments in time. Thus, in the exposition below the
new proposition symbols introduced, namely those indicated by v, y and z, must
be new at each iteration of the procedure. In the remainder of Section 3 and in
the Appendix, where the proofs for this section are located, we show such new
proposition symbols in bold face type.

Take any formula A of PLTL and translate into SNF by applying the τ0 and
τ1 transformations described below (where y is a new proposition symbol).

τ0[A] −→ (start ⇒ y) ∧ τ1[(y ⇒ A)]

Next, we give the τ1 transformation where x is a proposition symbol. If the
main operator on the right of the implication is a classical operator (other than
nonnegated disjunction) remove it as follows.

τ1[(x ⇒ (A ∧ B))] −→ τ1[(x ⇒ A)] ∧ τ1[(x ⇒ B)]

τ1[(x ⇒ (A ⇒ B))] −→ τ1[(x ⇒ (¬A ∨ B))]

τ1[(x ⇒ ¬(A ∧ B))] −→ τ1[(x ⇒ (¬A ∨ ¬B))]

τ1[(x ⇒ ¬(A ⇒ B))] −→ τ1[(x ⇒ A)] ∧ τ1[(x ⇒ ¬B)]

τ1[(x ⇒ ¬(A ∨ B))] −→ τ1[(x ⇒ ¬A)] ∧ τ1[(x ⇒ ¬B)]

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

20 • Michael Fisher et al.

Complex subformulae enclosed in any temporal operators are renamed as fol-
lows (where v, y, and z are new proposition symbols).

A neither literal
τ1[(x ⇒ ❢A)] −→ (x ⇒ ❢y) ∧ τ1[(y ⇒ A)] nor disjunction

of literals.
τ1[(x ⇒ ¬ ❢A)] −→ (x ⇒ ❢y) ∧ τ1[(y ⇒ ¬A)]

τ1[(x ⇒ A)] −→ τ1[(x ⇒ y)] ∧ τ1[(y ⇒ A)] A not a literal.

τ1[(x ⇒ ¬ A)] −→ (x ⇒ ♦y) ∧ τ1[(y ⇒ ¬A)]

τ1[(x ⇒ ♦A)] −→ (x ⇒ ♦y) ∧ τ1[(y ⇒ A)] A not a literal.

τ1[(x ⇒ ¬♦A)] −→ τ1[(x ⇒ y)] ∧ τ1[(y ⇒ ¬A)]

τ1[(x ⇒ AU B)] −→ τ1[(x ⇒ yU B)] ∧ τ1[(y ⇒ A)] A not a literal.

τ1[(x ⇒ AU B)] −→ τ1[(x ⇒ AU y)] ∧ τ1[(y ⇒ B)] B not a literal.

τ1[(x ⇒ ¬(AU B))] −→ τ1[(x ⇒ (yW v))]∧
τ1[(v ⇒ (y ∧ z))]∧
τ1[(y ⇒ ¬B)] ∧ τ1[(z ⇒ ¬A)]

τ1[(x ⇒ AW B)] −→ τ1[(x ⇒ yW B)] ∧ τ1[(y ⇒ A)] A not a literal.

τ1[(x ⇒ AW B)] −→ τ1[(x ⇒ AW y)] ∧ τ1[(y ⇒ B)] B not a literal.

τ1[(x ⇒¬(AW B))] −→ τ1[(x ⇒ (yU v))]∧
τ1[(v ⇒ (y ∧ z))]∧
τ1[(y ⇒ ¬B)] ∧ τ1[(z ⇒ ¬A)]

The negated W and U operators involve the introduction of three new propo-
sition symbols. Consider the transformation applied to x ⇒ ¬(AU B). Applying
the equivalence provided in Section 2.3.1 we have x ⇒ (¬BW (¬A ∧ ¬B)). To
avoid repeating the subformula ¬B in the translation, and so that the resul-
tant unless operator is applied to proposition symbols, we introduce three new
variables: y replaces ¬B, z replaces ¬A, v replaces y ∧ z.

Then, any temporal operators, applied to literals, that are not allowed in
the normal form are removed as follows (where, again, y is a new proposition
symbol and l and m are literals).

τ1[(x ⇒ l)] −→
τ1[(x ⇒ l)] ∧
τ1[(x ⇒ y)] ∧

(y ⇒ ❢l) ∧
(y ⇒ ❢y)

τ1[(x ⇒ l U m)] −→

(x ⇒ ♦m) ∧
τ1[(x ⇒ (l ∨ m))] ∧
τ1[(x ⇒ (y ∨ m))] ∧

(y ⇒ ❢(l ∨ m)) ∧
(y ⇒ ❢(y ∨ m))

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 21

τ1[(x ⇒ l W m)] −→
τ1[(x ⇒ (l ∨ m))] ∧
τ1[(x ⇒ (y ∨ m))] ∧

(y ⇒ ❢(l ∨ m)) ∧
(y ⇒ ❢(y ∨ m))

Next, we use renaming on formulae whose right-hand side has disjunction as its
main operator but may not be in the correct form, where y is a new proposition
symbol, D is a disjunction of formulae, and A is neither a literal nor a disjunction
of literals.

τ1[(x ⇒ D ∨ A)] −→ τ1[(x ⇒ D ∨ y)] ∧
τ1[(y ⇒ A)]

Finally, we rewrite formulae, containing no temporal operators, whose right-
hand side is a disjunction of literals, true or false (note that ¬true and ¬false
are rewritten to false and true, respectively) into PLTL-clause form and stop
applying the transformation to PLTL-clauses already in the correct form (where
D is a literal or disjunction of literals and l and each li are literals).

τ1[(x ⇒ D)] −→ (start ⇒ ¬x ∨ D) ∧
(true ⇒ ❢(¬x ∨ D))

τ1[(x ⇒ true)] −→ (start ⇒ true) ∧
(true ⇒ ❢true)

τ1[(x ⇒ false)] −→ (start ⇒ ¬x) ∧
(true ⇒ ❢¬x)

τ1[(x ⇒ ♦l)] −→ (x ⇒ ♦l)

τ1[(x ⇒ ❢(l1 ∨ . . . ∨ ln))] −→ (x ⇒ ❢(l1 ∨ . . . ∨ ln))

Thus, the above transformations are applied until the formula is in the form∧
i

Ai

where each Ai is one of the three required formats. This, in turn, is equivalent
to ∧

i

Ai.

3.3 Properties of the Translation to SNF

Our aim is to show that the transformation is satisfiability preserving. This
is shown in two parts. Firstly any model for a transformed formula is also a
model for the original, and secondly given a model for a PLTL formula there
is always a model for its transformation into the normal form. These proofs
(Lemmas A.1–A.4) are given in the Appendix.

THEOREM 3.3.1. A PLTL formula A is satisfiable if, and only if, τ0[A] is sat-
isfiable.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

22 • Michael Fisher et al.

PROOF. Lemmas A.1 and A.2 in the Appendix show that if τ0[A] is satisfiable
in a model, then A is satisfiable in the same model. Lemmas A.3 and A.4 in the
Appendix show that, given a model for A, then we can construct a model for
τ0[A].

3.4 Example

We illustrate the translation to the normal form by carrying out a simple ex-
ample transformation. Assume we want to show

(♦p ∧ (p ⇒ ❢p)) ⇒ ♦ p

is valid. We negate, obtaining

(♦p ∧ (p ⇒ ❢p)) ∧ ♦¬p,

and begin to translate this into SNF. First, we anchor to the beginning of time
and split the conjuncts.

1. start ⇒ f
2. f ⇒ ♦p
3. f ⇒ (p ⇒ ❢p)
4. f ⇒ ♦¬p

Formulae labeled 1 and 2 are now in normal form. We work on formula 3,
renaming the subformula p ⇒ ❢p.

5. f ⇒ q
6. q ⇒ (p ⇒ ❢p)

Next, we apply the removal rules to formula 5 (to give 7, 8, 9, and 10) and
rewrite formula 6 (to give 11).

7. f ⇒ q
8. f ⇒ r
9. r ⇒ ❢q

10. r ⇒ ❢r
11. q ⇒ (¬p ∨ ❢p)

Then, formulae 7 and 8 are rewritten into the normal form (giving 12–15) and
the subformula ❢p in formula 11 is renamed.

12. start ⇒ ¬f ∨ q
13. true ⇒ ❢(¬f ∨ q)
14. start ⇒ ¬f ∨ r
15. true ⇒ ❢(¬f ∨ r)
16. q ⇒ (¬p ∨ s)
17. s ⇒ ❢p

Formula 16 is then rewritten into the correct form.

18. start ⇒ (¬q ∨ ¬p ∨ s)
19. true ⇒ ❢(¬q ∨ ¬p ∨ s)

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 23

Next, we work on formula 4 renaming ♦¬p with the new proposition symbol t.

20. f ⇒ t
21. t ⇒ ♦¬p

Then, we remove the operator from formula 20 as previously

22. f ⇒ t
23. f ⇒ u
24. u ⇒ ❢t
25. u ⇒ ❢u

and finally write formulae 22 and 23 into the normal form.

26. start ⇒ ¬f ∨ t
27. true ⇒ ❢(¬f ∨ t)
28. start ⇒ ¬f ∨ u
29. true ⇒ ❢(¬f ∨ u)

The resulting normal form is as follows.

1. start ⇒ f
2. f ⇒ ♦p
9. r ⇒ ❢q

10. r ⇒ ❢r
12. start ⇒ ¬f ∨ q
13. true ⇒ ❢(¬f ∨ q)
14. start ⇒ ¬f ∨ r
15. true ⇒ ❢(¬f ∨ r)
17. s ⇒ ❢p

18. start ⇒ (¬q ∨ ¬p ∨ s)
19. true ⇒ ❢(¬q ∨ ¬p ∨ s)
21. t ⇒ ♦¬p
24. u ⇒ ❢t
25. u ⇒ ❢u
26. start ⇒ ¬f ∨ t
27. true ⇒ ❢(¬f ∨ t)
28. start ⇒ ¬f ∨ u
29. true ⇒ ❢(¬f ∨ u)

4. RESOLUTION RULES

Once a formula has been transformed into SNF, both step resolution and tem-
poral resolution operations can be applied. Step resolution effectively consists
of the application of the standard classical resolution rule to formulae repre-
senting constraints at a particular moment in time, together with simplifica-
tion rules, subsumption rules, and rules for transferring contradictions within
states to constraints on previous states. Temporal resolution resolves a some-
time PLTL-clause whose right-hand side is, for example, ♦l with a set of SNFm
PLTL-clauses that together imply that l is always false. We also describe aug-
mentation, the addition of new variables required to translate the resolvent
from temporal resolution into SNF at the start of the proof. This is useful in
ensuring that no new proposition symbols need to be added during the proof.

4.1 Step Resolution

Pairs of initial or step PLTL-clauses may be resolved using the following (res-
olution) operations (where A and B are disjunctions of literals, C and D are
conjunctions of literals, and p is a proposition).

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

24 • Michael Fisher et al.

start ⇒ A ∨ p
start ⇒ B ∨ ¬p
start ⇒ A ∨ B

C ⇒ ❢(A ∨ p)
D ⇒ ❢(B ∨ ¬p)

(C ∧ D) ⇒ ❢(A ∨ B)

The following is used for PLTL-clauses which imply false (where A is a con-
junction of literals).

{A ⇒ ❢false} −→
{

start ⇒ ¬A
true ⇒ ❢¬A

}

Thus, if, by satisfying A, a contradiction is produced in the next moment, then
A must never be satisfied. The new constraints generated effectively represent

¬A. This rewrite keeps formulae in the suggested normal form and may, in
turn, allow further step resolution inferences to be carried out.

PLTL-clauses are kept in their simplest form by performing classical style
simplification, for example performing the following contraction operations.

(l ∧ A ∧ l) ⇒ ❢B −→ (l ∧ A) ⇒ ❢B
(l ∧ A ∧ ¬l) ⇒ ❢B −→ false ⇒ ❢B
(A ∧ true) ⇒ ❢B −→ A ⇒ ❢B
(A ∧ false) ⇒ ❢B −→ false ⇒ ❢B

A ⇒ ❢(l ∨ B ∨ l) −→ A ⇒ ❢(l ∨ B)
A ⇒ ❢(l ∨ B ∨ ¬l) −→ A ⇒ ❢true
A ⇒ ❢(B ∨ true) −→ A ⇒ ❢true
A ⇒ ❢(B ∨ false) −→ A ⇒ ❢B

The following SNF PLTL-clauses can be removed during simplification, as they
represent valid subformulae and therefore cannot contribute to the generation
of a contradiction.

false ⇒ ❢A
A ⇒ ❢true

The first PLTL-clause is valid, as false can never be satisfied, and the second
is valid, as ❢true is always satisfied.

Subsumption also forms part of the step resolution process. Here, as in clas-
sical resolution, a PLTL-clause may be removed from the PLTL-clause-set if
it is subsumed by another PLTL-clause already present. Subsumption may be
expressed as the following operation.{

C ⇒ A
D ⇒ B

}
�C⇒D �B⇒A ✲ {D ⇒ B}

The side conditions � C ⇒ D and � B ⇒ A must hold before this subsumption
step can be applied, and, in this case, the PLTL-clause C ⇒ A can be deleted
without losing information.

The step resolution process terminates when either no new resolvents can be
generated or a contradiction is derived by generating the following unsatisfiable
formula

start ⇒ false.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 25

4.2 Temporal Resolution

The temporal resolution operation effectively resolves together formulae con-
taining the and ♦ connectives. However, the inductive interaction between
the ❢ and connectives in PLTL ensures that the application of such an
operation is nontrivial. Further, as the translation to SNF restricts the PLTL-
clauses to be of a certain form, the application of such an operation will be
between a sometime PLTL-clause and a set of step PLTL-clauses that to-
gether ensure a complementary literal will always hold. Intuitively, tempo-
ral resolution may be applied between an eventuality, i.e., a formula ♦l from
the right-hand side of a sometime PLTL-clause such as C ⇒♦l , and a for-
mula which forces l always to be false. Once the left-hand side of the some-
time PLTL-clause (i.e., C) is satisfied then, for the formula to be satisfiable,
there must be no other PLTL-clauses forcing l to always be false. To re-
solve with C ⇒♦l then, a set of SNFm PLTL-clauses (see Section 3) must
be identified such that they characterize A ⇒ ❢ ¬l (where A is in DNF).1

So, the general temporal resolution operation, written as an inference rule,
becomes

A ⇒ ❢ ¬l
C ⇒ ♦l
C ⇒ (¬A)W l

The intuition behind the resolvent is that once C has occurred then A must not
be satisfied until l has occurred (i.e., the eventuality has been satisfied). (Note
that the generation of C ⇒ (¬A)U l as a resolvent would be sound. However
as (¬A)U l ≡ ((¬A)W l) ∧ ♦l , the resolvent would be equivalent to the pair of
resolvents C ⇒ (¬A)W l and C ⇒ ♦l . The latter is subsumed by the sometime
PLTL-clause we have resolved with. So this leaves only the “W ” formula.)
The resolvent must next be translated into SNF. In previous presentations, for
example, Fisher [1991], two resolvents have been given. As the resolvent given
here is sufficient for completeness we omit the second.

In SNF we have no PLTL-clauses of the form A ⇒ ❢ ¬l . So the full tempo-
ral resolution operation applies between a sometime PLTL-clause and a set of
SNFm PLTL-clauses that together imply A ⇒ ❢ ¬l . The temporal resolution
operation, in detail, is

A0 ⇒ ❢B0
. . . ⇒ . . .

An ⇒ ❢Bn
C ⇒ ♦l

C ⇒
[

n∧
i=0

(¬Ai)

]
W l

with the side conditions that, for all i 0 ≤ i ≤ n,

1The ❡operator occurs because it is ❡ ¬l rather than ¬l that is actually generated from a
set of merged SNF step clauses.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

26 • Michael Fisher et al.

� Bi ⇒ ¬l ; and

� Bi ⇒
n∨

j=0

Aj .

Here, the side conditions are simply propositional formulae, so they must
hold in (classical) propositional logic. The first side condition ensures that by
satisfying any Bi then ¬l will be satisfied. The second shows that once some
Bi is satisfied then one of the left-hand sides (Aj) will also be satisfied. Hence,
if any Ai is satisfied, then, in the next moment, Bi is satisfied, as is ¬l , as is
Aj for some j and so on, so that

(∨
i

Ai

)
⇒ ❢ ¬l .

The set of SNFm PLTL-clauses Ai ⇒ ❢Bi that satisfy these side conditions
are together known as a loop in ¬l . The disjunction of the left-hand side of
this set of SNFm PLTL-clauses, i.e., ∨

i

Ai,

is known as a loop formula for ¬l . The most complex part of this approach
is the search for the set of SNFm PLTL-clauses to use in the application of
the temporal resolution operation. Detailed explanation of the techniques
developed for this search is beyond the scope of this article but is discussed at
length in Dixon et al. [1995] and Dixon [1996; 1998].

The resolvent must be translated into SNF before any further resolution
steps. A translation to the normal form is given below that avoids the renaming
of the subformula

n∧
i=0

¬Ai

where t is a new proposition symbol and i = 0, . . . , n. Thus, for each of the
PLTL-clauses (1), (2), and (5) there are n + 1 copies, one for each Ai. (N.B., we
will see in Section 6.3 that this is important for completeness.)

start ⇒ ¬C ∨ l ∨ ¬Ai (1)
true ⇒ ❢(¬C ∨ l ∨ ¬Ai) (2)
start ⇒ ¬C ∨ l ∨ t (3)
true ⇒ ❢(¬C ∨ l ∨ t) (4)

t ⇒ ❢(l ∨ ¬Ai) (5)
t ⇒ ❢(l ∨ t) (6)

We note that only the resolvents (1), (2), and (5) depend on the particular loop
being resolved with, i.e., contain a reference to Ai.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 27

4.3 Augmentation

The introduction of new variables, such as t above, makes proofs about the tem-
poral resolution method more difficult. Furthermore, if a temporal resolution
proof involves two temporal resolution inferences involving the same literal,
we may introduce two new variables where one would suffice. Thus, for n dif-
ferent eventualities we only require n new proposition symbols. We introduce
these new proposition symbols at the start of the proof by adding the resolvents
that do not contain ¬Ai, that is, have no reference to the loop detected (i.e., the
PLTL-clauses above labeled 3, 4, and 6) at the beginning and the rest of the
PLTL-clauses, if required, as the proof proceeds. The following definitions for-
malize this technique. Given an eventuality ♦l , the new proposition symbol
introduced is wl (rather than t above) which can be thought of as waiting for l .
Hence having translated to SNF and augmented, we can be sure that no new
proposition symbols appear during the application of the resolution rules.

Definition 4.3.1 (Augmented PLTL-Clause Sets). Given a set, S, of SNF
PLTL-clauses, we construct an augmented set of PLTL-clauses Aug (S) as fol-
lows. For each literal l which occurs as an eventuality in S we introduce a new
proposition symbol, wl , and record the correspondence between l and wl . The
variable wl will be used to record the condition that we are waiting for l to
occur. The first defining PLTL-clause for wl is

wl ⇒ ❢(l ∨ wl). (7)

Then, for each PLTL-clause C ⇒ ♦l , we add both

start ⇒ ¬C ∨ l ∨ wl (8)
true ⇒ ❢(¬C ∨ l ∨ wl). (9)

Definition 4.3.2. The loop resolvents for a sometime PLTL-clause C ⇒ ♦l
and a loop formula

∨
i Ai are

start ⇒ ¬C ∨ l ∨ ¬Ai (10)
true ⇒ ❢(¬C ∨ l ∨ ¬Ai) (11)

wl ⇒ ❢(l ∨ ¬Ai) (12)

for each i.

Note, the loop resolvents for a particular sometime clause and loop formula are
the only clauses added to the clause-set by applying the temporal resolution
rule.

4.4 An Algorithm for the Temporal Resolution Method

Given any temporal formula, A, to be tested for unsatisfiability, the following
steps are performed.

(1) Translate A into SNF, giving As.
(2) Augment As, giving Aug (As).
(3) Perform step resolution (including simplification and subsumption) on

Aug (As) until either

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

28 • Michael Fisher et al.

(a) start ⇒ false is derived—terminate noting that A is unsatisfiable; or
(b) no new resolvents are generated—continue to step (4).

(4) Select an eventuality from the right-hand side of a sometime PLTL-clause
within Aug (As), for example ♦l . Search for loop-formulae for ¬l .

(5) Construct loop resolvents for the loop-formulae detected and each sometime
PLTL-clause with ♦l on the right-hand side. If any new formulae (i.e., that
are not subsumed by PLTL-clauses already present) have been generated,
go to step (3).

(6) If all eventualities have been resolved, i.e., no new formulae have been
generated for any of the eventualities, terminate declaring A satisfiable;
otherwise go to step (4).

We will consider the soundness, completeness, and termination of this method
in Section 6.

5. EXAMPLES

We illustrate the method by presenting a selection of examples.

5.1 Step Resolution Example

We prove an instance of one of the PLTL axioms that requires only step resolu-
tion, namely

� ❢(a ⇒ b) ⇒ (❢a ⇒ ❢b).

We negate

❢(a ⇒ b) ∧ (❢a ∧ ❢¬b)

and rewrite into SNF as follows.

1. start ⇒ f
2. f ⇒ ❢x
3. start ⇒ (¬x ∨ ¬a ∨ b)
4. true ⇒ ❢(¬x ∨ ¬a ∨ b)
5. f ⇒ ❢a
6. f ⇒ ❢¬b

There are no sometime PLTL-clauses, so augmentation adds no new PLTL-
clauses. Resolution can be carried out as follows.

7. f ⇒ ❢(¬x ∨ ¬a) [4, 6 Step Resolution]
8. f ⇒ ❢¬x [5, 7 Step Resolution]
9. f ⇒ ❢false [2, 8 Step Resolution]

10. start ⇒ ¬ f [9 Rewriting]
11. true ⇒ ❢¬ f [9 Rewriting]
12. start ⇒ false [1, 10 (Initial) Step Resolution]

A contradiction has been obtained meaning the negated formula is unsatisfi-
able, and therefore the original formula is valid.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 29

5.2 Temporal Resolution Example (from a Set of Clauses)

Assume we wish to show that the following set of PLTL-clauses (already trans-
lated into SNF) is unsatisfiable.

1. start ⇒ f
2. start ⇒ a
3. start ⇒ p
4. f ⇒ ♦¬p
5. f ⇒ ❢a
6. a ⇒ ❢(b ∨ x)
7. b ⇒ ❢a
8. b ⇒ ❢p
9. a ⇒ ❢p

10. a ⇒ ❢¬x

As the set of PLTL-clauses contains a sometime PLTL-clause (no. 4) we augment
with the following PLTL-clauses.

11. start ⇒ ¬ f ∨ ¬p ∨ w¬p [4 Augmentation]
12. true ⇒ ❢(¬ f ∨ ¬p ∨ w¬p) [4 Augmentation]
13. w¬p ⇒ ❢(¬p ∨ w¬p) [4 Augmentation]

Step resolution occurs as follows.

14. a ⇒ ❢b [6, 10 Step Resolution]

Note other step resolution inferences may be performed, for example, between
1 and 11, but we omit them as they play no part in the proof. By merging PLTL-
clauses 9 and 14, and 7 and 8 into SNFm using the merged-SNF rule given in
Section 3.1 we obtain the following loop in p (in SNFm)

a ⇒ ❢(b ∧ p) [9, 14 SNFm]
b ⇒ ❢(a ∧ p) [7, 8 SNFm]

for resolution with PLTL-clause 4. The resolvents after temporal resolution are
PLTL-clauses 15–20 below:

15. start ⇒ ¬ f ∨ ¬p ∨ ¬a [4, 7, 8, 9, 14 Temporal Resolution]
16. true ⇒ ❢(¬ f ∨ ¬p ∨ ¬a) [4, 7, 8, 9, 14 Temporal Resolution]
17. start ⇒ ¬ f ∨ ¬p ∨ ¬b [4, 7, 8, 9, 14 Temporal Resolution]
18. true ⇒ ❢(¬ f ∨ ¬p ∨ ¬b) [4, 7, 8, 9, 14 Temporal Resolution]
19. w¬p ⇒ ❢(¬p ∨ ¬a) [4, 7, 8, 9, 14 Temporal Resolution]
20. w¬p ⇒ ❢(¬p ∨ ¬b) [4, 7, 8, 9, 14 Temporal Resolution]

And the proof concludes as follows.

21. start ⇒ ¬ f ∨ ¬a [3, 15 (Initial) Step Resolution]
22. start ⇒ ¬ f [2, 21 (Initial) Step Resolution]
23. start ⇒ false [1, 22 (Initial) Step Resolution]

A contradiction has been obtained; hence the set of PLTL-clauses is unsat-
isfiable.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

30 • Michael Fisher et al.

5.3 Temporal Resolution Example (from a Formula)

Next we show that a∧♦¬a is unsatisfiable. First we translate to the normal
form.

1. start ⇒ x
2. x ⇒ ♦¬a
3. start ⇒ ¬x ∨ a
4. true ⇒ ❢(¬x ∨ a)
5. start ⇒ ¬x ∨ y
6. true ⇒ ❢(¬x ∨ y)
7. y ⇒ ❢y
8. y ⇒ ❢a

As the set of PLTL-clauses contains a sometime PLTL-clause (no. 2) we augment
with the following PLTL-clauses.

9. start ⇒ ¬x ∨ ¬a ∨ w¬a [2 Augmentation]
10. true ⇒ ❢(¬x ∨ ¬a ∨ w¬a) [2 Augmentation]
11. w¬a ⇒ ❢(¬a ∨ w¬a) [2 Augmentation]

We can find a loop for resolution with PLTL-clause 2 by merging 7 and 8 to give

y ⇒ ❢(y ∧ a).

One of the resolvents obtained is PLTL-clause 12 from which we can derive a
contradiction.

12. start ⇒ ¬x ∨ ¬a ∨ ¬ y [2, 7, 8 Temporal Resolution]
13. start ⇒ ¬x ∨ ¬a [5, 12 (Initial) Step Resolution]
14. start ⇒ ¬x [3, 13 (Initial) Step Resolution]
15. start ⇒ false [1, 14 (Initial) Step Resolution]

5.4 A Larger Example

Here we conclude the example introduced in Section 3.4. Recall we are trying
to show that

(♦p ∧ (p ⇒ ❢p)) ⇒ ♦ p

is valid. We negated and translated the formula into SNF in Section 3.4.
The PLTL-clauses in normal form are repeated here although they have been
renumbered sequentially. We only show the steps relevant to the refutation.

1. start ⇒ f
2. f ⇒ ♦p
3. r ⇒ ❢q
4. r ⇒ ❢r
5. start ⇒ ¬ f ∨ q
6. true ⇒ ¬ f ∨ q
7. start ⇒ ¬ f ∨ r
8. true ⇒ ¬ f ∨ r
9. s ⇒ ❢p

10. start ⇒ (¬q ∨ ¬p ∨ s)
11. true ⇒ ❢(¬q ∨ ¬p ∨ s)
12. t ⇒ ♦¬p
13. u ⇒ ❢t
14. u ⇒ ❢u
15. start ⇒ ¬ f ∨ t
16. true ⇒ ❢(¬ f ∨ t)
17. start ⇒ ¬ f ∨ u
18. true ⇒ ❢(¬ f ∨ u)

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 31

Next, we augment the set of PLTL-clauses to account for the two sometime
PLTL-clauses 2 and 12.

19. start ⇒ (¬ f ∨ wp ∨ p) [2 Augmentation]
20. true ⇒ ❢(¬ f ∨ wp ∨ p) [2 Augmentation]
21. wp ⇒ ❢(wp ∨ p) [2 Augmentation]
22. start ⇒ (¬t ∨ w¬p ∨ ¬p) [12 Augmentation]
23. true ⇒ ❢(¬t ∨ w¬p ∨ ¬p) [12 Augmentation]
24. w¬p ⇒ ❢(w¬p ∨ ¬p) [12 Augmentation]

Step resolution then begins.

25. r ⇒ ❢(¬p ∨ s) [3, 11 Step Resolution]
26. (s ∧ r) ⇒ ❢s [9, 25 Step Resolution]

By merging PLTL-clauses 4, 9, and 26 into SNFm we obtain the loop

(s ∧ r) ⇒ ❢(s ∧ r ∧ p)

for resolution with PLTL-clause 12. This generates additional PLTL-clauses
(from the resolvent) as follows.

27. start ⇒ (¬t ∨ ¬s ∨ ¬r ∨ ¬p) [4, 9, 26, 12 Temporal Resolution]
28. true ⇒ ❢(¬t ∨ ¬s ∨ ¬r ∨ ¬p) [4, 9, 26, 12 Temporal Resolution]
29. w¬p ⇒ ❢(¬s ∨ ¬r ∨ ¬p) [4, 9, 26, 12 Temporal Resolution]

Thus, the refutation continues as follows.

30. true ⇒ ❢(¬t ∨ ¬r ∨ ¬p ∨ ¬q) [11, 28 Step Resolution]
31. r ⇒ ❢(¬t ∨ ¬p ∨ ¬q) [4, 30 Step Resolution]
32. r ⇒ ❢(¬t ∨ ¬p) [3, 31 Step Resolution]
33. (r ∧ u) ⇒ ❢¬p [13, 32 Step Resolution]

Now by merging PLTL-clauses 4, 14, and 33

(r ∧ u) ⇒ ❢(r ∧ u ∧ ¬p)

we have a loop for resolution with PLTL-clause 2, which generates several
resolvents, including PLTL-clause 34.

34. start ⇒ (¬ f ∨ ¬r ∨ ¬u ∨ p) [2, 4, 14, 33Temporal Resolution]
35. start ⇒ (¬ f ∨ ¬r ∨ ¬u ∨ ¬q ∨ s) [10, 34 (Initial) Step Resolution]
36. start ⇒ (¬ f ∨ ¬r ∨ ¬u ∨ ¬q ∨ ¬t ∨ ¬p) [27, 35 (Initial) Step Resolution]
37. start ⇒ (¬ f ∨ ¬r ∨ ¬u ∨ ¬q ∨ ¬t) [34, 36 (Initial) Step Resolution]
38. start ⇒ (¬ f ∨ ¬r ∨ ¬q ∨ ¬t) [17, 37 (Initial) Step Resolution]
39. start ⇒ (¬ f ∨ ¬r ∨ ¬q) [15, 38 (Initial) Step Resolution]
40. start ⇒ (¬ f ∨ ¬q) [7, 39 (Initial) Step Resolution]
41. start ⇒ ¬ f [5, 40 (Initial) Step Resolution]
42. start ⇒ false [1, 41 (Initial) Step Resolution]

6. CORRECTNESS

First we show that augmentation is satisfiability preserving. Next, a sound-
ness result is obtained by showing that an application of the step or temporal

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

32 • Michael Fisher et al.

resolution rule preserves satisfiability. Finally completeness is proved by con-
sidering the construction of a graph representing all possible models of the
augmented set of PLTL-clauses. Here, deletions of parts of the graph that
cannot be used to construct models are associated with step and resolution
rules.

6.1 Augmented PLTL-Clause Sets

We will show that an augmented PLTL-clause set has a model if, and only if,
its underlying (nonaugmented) PLTL-clause set has a model.

Definition 6.1.1. Given a set, S, of SNF PLTL-clauses, a normal model for
the augmented PLTL-clause set for S is a model which satisfies the formula

(wl ⇔ (¬l ∧ ♦l)) (13)

for each literal l which occurs as an eventuality (i.e., inside the scope of a ♦
operator) in S.

Definition 6.1.2. An augmented PLTL-clause set is said to be well-behaved
if it is either unsatisfiable or has a normal model.

LEMMA 6.1.1 (AUGMENTATION). If S is a set of SNF PLTL-clauses then

(1) Aug (S) is well-behaved and
(2) Aug (S) has a model if and only if S has a model.

PROOF. If Aug (S) has a model then ignoring the value of each wl at each
moment gives a model for S. Conversely, if S has a model M , then M can be
extended to a model M ′ for Aug (S) by giving wl the same truth value as ¬l ∧♦l
in M in each state, and for each literal l . The model M ′ clearly satisfies the
formulae (7), (8), and (9) from Section 4.3 and (13) above. The lemma follows
easily from these two observations.

6.2 Soundness

6.2.1 Step Resolution Rules. It is easy to see that given a satisfiable set
of PLTL-clauses the application of the initial or step resolution inferences, or
simplification, preserves satisfiability.

6.2.2 Temporal Resolution Rule. The following lemma is a soundness re-
sult for the temporal resolution rule (applied to augmented PLTL-clause sets).

LEMMA 6.2.1 (SOUNDNESS). Let S be a well-behaved augmented PLTL-clause
set. Let the PLTL-clause set T be obtained from S by application of the temporal
resolution operation. Then

(1) T is well-behaved and
(2) if S is satisfiable then T is satisfiable.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 33

PROOF. If S is satisfiable then S has a model, and by Lemma 6.1.1 it has a
normal model M . The side conditions for temporal resolution guarantee that
the loop resolvents, i.e., formulae (10), (11), and (12) given in Section 4.3 hold in
M , and so M is a (normal) model for T , i.e., T is satisfiable. If S is unsatisfiable
then the addition of PLTL-clauses to produce T is also unsatisfiable. Hence T
is well-behaved.

6.3 Completeness

We will now prove the completeness of the temporal resolution procedure by
induction on the size of a behavior graph of a set of SNF PLTL-clauses. Note, as
we have added all the new variables required for the translation of the unless
operator by augmentation in Section 6.1 and avoided renaming the conjunction
that occurs from negating the loop-formula (a disjunction) as mentioned in
Section 4.2 we require no new proposition symbols during the proof. Thus the
graph constructed has all the propositional symbols we require and will not
increase in size during the proof.

Definition 6.3.1 (Behavior Graph). Given a set S of SNF PLTL-clauses, we
construct a finite directed graph G as follows. The nodes of G are all ordered
pairs (V , E) where

—V is a valuation of the proposition symbols occurring in S, i.e., V contains
either p or ¬p for each proposition symbol p in S; and

—E is a subset of the literals occurring as eventualities in S, i.e., literals oc-
curring on the right-hand side of the sometime PLTL-clauses in S.

For each node (V , E), let

—R be the set of step PLTL-clauses of S which are “fired” by V —that is, the
set of step PLTL-clauses whose left-hand sides are satisfied by V ;

—L be the set of clauses on the right-hand sides of the PLTL-clauses in R, i.e.,
L contains formulae that are the disjunction of literals from the right-hand
side of each PLTL-clause in R having first removed the next operator;

—E ′ be the set of elements of E which are not satisfied by V .

For each valuation V ′ which satisfies L, let E ′′ be the set of literals occurring on
the right-hand sides of the sometime PLTL-clauses fired by V ′. Then for each
V ′ construct an edge in G from (V , E) to (V ′, E ′ ∪ E ′′). These are the only edges
originating from (V , E).

Let L0 be the set of initial PLTL-clauses of S. For each valuation V which
satisfies L0, where E ′ is the set of literals occurring on the right-hand sides
of the sometime PLTL-clauses fired by V , the node (V , E ′) is designated as an
initial node of G. The behavior graph of S is the full subgraph of G given by
the set of nodes reachable from the initial nodes. We regard the identification
of the initial nodes as part of the structure of the behavior graph.

LEMMA 6.3.1. Let S be a set of SNF PLTL-clauses, and let T be the set of SNF
PLTL-clauses obtained from S by adding finitely many initial PLTL-clauses
and finitely many step PLTL-clauses which only involve proposition symbols

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

34 • Michael Fisher et al.

occurring in S. Then the behavior graph of T is a subgraph of the behavior
graph of S.

PROOF. This is established by induction on the length of the shortest path
from an initial node to an arbitrary node in the behavior graph of T . Let len
be the length of the shortest path from an initial node to a node n. To show
the base case we let len = 0 and show that any initial node in the behavior
graph of T is an initial node in the behavior graph of S. Let I ⊆ S be the initial
PLTL-clauses of S and I ′ ⊆ T the initial PLTL-clauses of T . As T has been
constructed by adding initial and/or step PLTL-clauses to S, I ⊆ I ′. Take any
initial node n0 = (V0, E0) in the behavior graph for T . From the definition of the
behavior graph V0 must satisfy the right-hand side of the initial PLTL-clauses
in I ′. As I ⊆ I ′ then V0 must also satisfy the right-hand side of the PLTL-clauses
in I . As the set of sometime PLTL-clauses in S and T is unchanged, i.e., as V0
satisfies the left-hand side of the same sometime PLTL-clauses in S and T the
set E0 will be the same in each graph for V0, and thus the node n0 = (V0, E0) is
also in the behavior graph for S.

Next we assume that if any node n, where the length of the shortest path
from an initial node to n is m, is in the behavior graph for T , it is also in the
behavior graph for S. We show that any node n′ in the behavior graph for T
whose shortest path length from an initial node is m + 1, is also in the behavior
graph for S. Let J ⊆ S be the step PLTL-clauses in S and J ′ ⊆ T the step PLTL-
clauses in T . By assumption we have J ⊆ J ′. Consider some node n′ = (V ′, E ′)
in the behavior graph of T where the shortest path from an initial node to n′ is
m + 1. Let n = (V , E) be any node in the behavior graph for T such that there
is an edge from n to n′ and such that the shortest path from an initial node to
n is of length m. By the induction hypothesis, we assume that n is also in the
behavior graph for S.

Let X ′ ⊆ J ′ be the set of step PLTL-clauses in T such that the left-hand sides
are satisfied by V , while the right-hand sides are satisfied by V ′. Let X ⊆ J be
the corresponding set of step PLTL-clauses in S, i.e., where the left-hand sides
are satisfied by V , while the right-hand sides are satisfied by V ′. As J ⊆ J ′ we
have X ⊆ X ′. Furthermore as no change has been made to the set of sometime
PLTL-clauses any eventualities outstanding from n or triggered by n′ will be
the same in each graph. Thus n′ is also present in the behavior graph for S.

LEMMA 6.3.2. Any model for a set of SNF-PLTL-clauses, S, can be con-
structed from a path through the behavior graph for S.

PROOF. To construct a model from a suitable path, N0, N1, N2, . . . where
each Ni = (Vi, Ei), through the behavior graph (i.e., one which is infinite and
in which all eventualities are satisfied) take the valuation Vi from each node
Ni in the path (and delete any negated proposition symbols). Any proposition
symbols that do not occur in S but are required in the model may be set arbi-
trarily. Details of how to construct models from behavior graphs are given in
Lemma 6.3.5.

Take any model σ = s0, s1, . . . for S. We show that this model can be con-
structed from a path through the behavior graph. First delete any proposition

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 35

symbols not in S from σ to give σ ′ = s ′
0, s ′

1, As these proposition symbols do
not occur in S they have no constraints on them, so by setting these proposition
symbols to true and false in the correct way we can recover σ . Note that σ ′ is a
model for S. By definition the behavior graph for S is the reachable subgraph
from the set of initial nodes. The behavior graph has been constructed where
the V component of each node consists of every possible valuation. Let pos(Vi)
be the set of nonnegated proposition symbols in Vi. As σ ′ is a model for S, s ′

0
must satisfy the initial rules I ⊆ S. To construct the behavior graph for S the
initial nodes are those with valuations that satisfy I , for a particular E compo-
nent. As nodes are constructed with each valuation and subset of eventualities
there must be a node N0 = (V0, E0) where pos(V0) = s ′

0.
Next for some s ′

i in σ ′ assume that there is a node Ni = (Vi, Ei) in the behavior
graph for S such that pos(Vi) = s ′

i . We show that pos(s ′
i+1) = Vi+1 for some node

Ni+1 = (Vi+1, Ei+1) in the behavior graph for S. Let R ⊆ S be the set of step
PLTL-clauses in S. Take the set of step PLTL-clauses R ′ ⊆ R such that the left-
hand side of the PLTL-clauses in R ′ is satisfied by Vi. As pos(Vi) = s ′

i , s ′
i must

satisfy the left-hand side of the PLTL-clauses in R ′. As σ ′ is a model for S, s ′
i+1

must satisfy the right-hand side of each PLTL-clauses in R ′ having deleted the
next operator. From the construction of the behavior graph, edges are drawn
from Ni to nodes whose valuation satisfies the right-hand side of each PLTL-
clauses in R ′ having deleted the next operator (for some E component). As nodes
have been constructed for all valuation/eventuality component combinations
there will be one Ni+1 = (Vi+1, Ei+1) such that pos(Vi+1) = s ′

i+1.
Hence we can construct σ ′ using the valuations from each node and following

a path through the behavior graph for S. This can be extended to σ by setting
the additional proposition symbols as required.

LEMMA 6.3.3. Let S be a set of PLTL-clauses and T be the set of clauses ob-
tained from S by applying one simplification or subsumption step. The behavior
graph for S is the same as the behavior graph for T.

PROOF. First assume we have performed a simplification step. We show that
any node and edge that is in the behavior graph for S is also in the behavior
graph for T . The proof of the converse is similar. The proof is by induction
on the length of the shortest path from an initial node. For the base case the
length of the path from an initial node to n is 0, i.e., n is an initial node. If
the simplification step has not been performed on an initial PLTL-clause i.e.,
the set of initial PLTL-clauses in S and in T are the same, then n must also be
in the behavior graph for T . Otherwise we have performed a simplification step
on an initial PLTL-clause, i.e., S contains start ⇒ Y and T contains start ⇒ Y ′

where Y ≡ Y ′. Each initial node n in the behavior graph for S satisfies Y by
definition of the behavior graph. As Y ≡ Y ′ node n also satisfies Y ′, so n is in
the behavior graph for T .

Next assume the node n in the behavior graph for S, whose shortest path
distance from an initial node is m, is also in the behavior graph for T . We show
that any node of shortest path length m + 1 from an initial node is also in the
behavior graph for T . Take a node n′′ in the behavior graph for S whose shortest

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

36 • Michael Fisher et al.

path length from an initial node is m + 1. Consider n′ such that (n′, n′′) is an
edge in the behavior graph from S where the shortest path length from n′ to an
initial node is m. From the induction hypothesis n′ is also in the behavior graph
for T . Assume that a simplification step has been applied to rule X ⇒ ❢Y ∈ S
to obtain X ′ ⇒ ❢Y ′ ∈ T and that n′ satisfies X . Thus from the definition of
the behavior graph n′′ must satisfy Y . As we have performed a simplification
step X ≡ X ′ and Y ≡ Y ′, so n′ also satisfies X ′ and n′′ satisfies Y ′, as the sets
S and T are unchanged apart from this. Hence n′′ and the edge (n′, n′′) must
also be in T . If the node n′ did not satisfy X , or the simplification rule had been
on an initial PLTL-clause, then n′′ would again be in the behavior graph for T
as the remaining rules are unchanged. The proof of the converse is similar.

To show the proof holds for a subsumption step assume S contain rules X ⇒
❢Y and X ′ ⇒ ❢Y ′ where X ⇒ X ′ and Y ′ ⇒ Y . Thus by a subsumption step

T = S\{X ⇒ ❢Y }. The proof is similar to the above.

We now introduce the concept of a reduced behavior graph, which will be used
later in the completeness proof.

Definition 6.3.2 (Reduced Behavior Graph). Given a behavior graph we ap-
ply the following rules repeatedly until no more deletions are possible.

—If a node has no successors, delete that node (and all edges to the node).
—If a node n = (V , E) contains an eventuality l (i.e., l ∈ E) and l is not satisfied

in n, i.e., l �∈ V , and there is no path from n to a node whose valuation satisfies
l , then delete n.

The resulting graph is called the reduced behavior graph for S.

This terminology implies that the reduced graph does not depend on the order
of deletions. The proof of this fact is straightforward, but is not necessary for
the completeness proof—we only need to know that a reduced graph (one from
which no further deletions are permitted) exists.

LEMMA 6.3.4. During the construction of a reduced behavior graph any node
reachable from a deleted node is also deleted.

PROOF. There are two conditions for the deletions of nodes to form a reduced
behavior graph. Firstly nodes with no successors are deleted. No nodes are
reachable from a node with no successors; hence the lemma follows. Secondly
nodes n = (V , E) that are deleted where l is an outstanding eventuality, i.e.,
l ∈ E but no reachable node satisfies l , i.e., ¬l ∈ V . From the construction of
the behavior graph and from the conditions allowing us to delete n, any node
n′ = (V ′, E ′) reachable from n must contain l as an outstanding eventuality,
i.e., l ∈ E and but does not satisfy l . Thus any node reachable from n must also
be deleted.

LEMMA 6.3.5. A set of SNF PLTL-clauses is unsatisfiable if, and only if, its
reduced behavior graph is empty.

PROOF. Let S be a set of SNF PLTL-clauses. An infinite path through the
(unreduced) behavior graph for S, starting at an initial node, gives a sequence

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 37

of valuations for the propositional symbols—i.e., a PLTL model. By construc-
tion of the graph, this model satisfies the initial and step PLTL-clauses of S.
Furthermore, by Lemma 6.3.2 any such model must arise from a path through
the behavior graph. However, not all paths give models for the full set of PLTL-
clauses S, since either the paths may not be infinite or they may fail to satisfy
some eventualities (which occur within sometime PLTL-clauses). If a node, n,
has no successors, then there are no infinite paths through that node, so any
model for S must arise from a path through the graph with n deleted. Thus the
first deletion criterion can be applied without removing any potential models.
Also, if a node n contains an eventuality l then any path through that node
which is to yield a model for S must satisfy l either at n or somewhere later in
the path. Thus, if a node contains an eventuality that cannot be satisfied then
this node cannot be part of a model for the set of PLTL-clauses; hence, we can
apply the second deletion criterion without discarding potential models for S.
The “if” part of the proposition follows.

To prove the “only if” part, suppose the reduced behavior graph for S, call it
G, is nonempty. We will now use G to construct a model for S. First note that
the set of initial nodes in G is nonempty, since, in the behavior graph, every
node is reachable from the initial nodes and since any node reachable from
a deleted node is also deleted (by Lemma 6.3.4). Now, choose an initial node
n0 = (V0, E0). If E0 is nonempty, choose an ordering e1, . . . , ek for the literals in
E0. Since n0 has not been deleted, there is a path in G to a node m0,1 in which
the eventuality e1 is satisfied. If the eventuality e2 is not present in m0,1 it
must have been satisfied somewhere along the path. Otherwise, we can extend
the path to a node m0,2, which satisfies e2. Continuing in this way we can find
a path P1 (which may consist simply of the node n0 if all of E0 are satisfied
there) such that each element of E0 is satisfied at some point along P1. Let n1
be a successor of the end point of P1 (it must have a successor, since we have
deleted all terminal nodes). Repeating our construction, we can find a path P2
beginning at n1 along which all the eventualities in n1 are satisfied. Let n2 be
a successor of the end point of P2. Repeat this construction until ni = nj for
some i > j , which must happen eventually, since G is finite. Let Q be the path
Pi+1 . . . Pj . Then the path P = P1 P2 . . . Pi Q Q . . . has the property that, for each
node in the path, each eventuality in that node is satisfied at some node later
in the path. To see this, recall that if a node contains an eventuality e but does
not satisfy e, then e is in the eventuality set of all immediate successors of l . So,
either e is satisfied before we reach the next nr or e is an eventuality in nr and
so is satisfied along Pr . Furthermore P is obviously an infinite path. It follows
by the construction of the behavior graph that the sequence of valuations given
by P is a model for S.

We are now ready to prove the completeness theorem for propositional clausal
temporal resolution.

THEOREM 6.3.3 (COMPLETENESS). If a well-behaved augmented PLTL-clause
set, S, is unsatisfiable then the temporal resolution procedure will derive a refu-
tation when applied to S.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

38 • Michael Fisher et al.

PROOF. The proof proceeds by induction on the number of nodes in the be-
havior graph of S.

First we consider the effect of simplification and subsumption rules on the
behavior graph for a set of PLTL-clauses. Given a set of PLTL-clauses S let
the application of simplification and subsumption rules to S result in the set of
PLTL-clauses S′. By Lemma 6.3.3 the behavior graph of S is identical to that
of S′.

If the behavior graph is empty, then the set of initial PLTL-clauses in S
is unsatisfiable. By the completeness of classical resolution, we can use step
resolution on the set of initial PLTL-clauses to derive the empty clause.

Now suppose the behavior graph G is nonempty. By Lemma 6.3.5, the re-
duced behavior graph is empty, and so there must be a node which can be
deleted from G. If G has a terminal node n = (V , E), let R be the set of step
PLTL-clauses whose left-hand sides are satisfied by V . Then, having deleted
the next operator, the right-hand side of the PLTL-clauses in R forms an unsat-
isfiable set L of propositional clauses. By completeness of classical resolution
again, there is a refutation of L. Choosing an element of R corresponding to
each element of L, we can “mimic” this classical refutation by step resolution
inferences to derive a step PLTL-clause

l1 ∧ . . . ∧ lk ⇒ ❢false (14)

where each li is a literal which is satisfied by V . The temporal resolution pro-
cedure allows us to rewrite PLTL-clause (14) as

start ⇒ ¬l1 ∨ . . . ∨ ¬lk (15)
true ⇒ ❢(¬l1 ∨ . . . ∨ ¬lk). (16)

By Lemma 6.3.1, adding PLTL-clauses (15) and (16) (and any other resolvents
derived along the way) to S produces a PLTL-clause set T whose behavior graph
H is a subgraph of G. (H is in fact a proper subgraph, since H has no node
whose valuation is V . If n was an initial node it does not satisfy the initial
PLTL-clause (15) as li ∈ V for i = 1 . . . k. If n was a noninitial node, as the
left-hand side true is satisfied by every node in G the successor of any node
must also satisfy (¬l1 ∨ . . . ∨ ¬lk). As we have li ∈ V for i = 0 . . . k no edges
can be drawn to n, so H does not contain n.) Furthermore, T is well-behaved,
since it has exactly the same models as S. By induction, T , and hence S, has a
refutation.

If G does not have a terminal node, then it must contain a node n = (V , E)
such that some eventuality l ∈ E is not satisfied at any node reachable from n.
Let N be the set of nodes reachable from n. For each ni = (Vi, Ei) ∈ N , let Ri be
the set of step PLTL-clauses in S whose left-hand sides are satisfied by Vi. Let

Ai ⇒ ❢Bi (17)

be an SNFm PLTL-clause that is the result of applying the SNFm merging
operation to the PLTL-clauses in Ri. Note that Ai is the conjunction of the
left-hand side of the PLTL-clauses in Ri, Bi is the conjunction of the right-hand
sides of the PLTL-clauses in Ri (contained in the next operator), and Vi satisfies
Ai. Note also that Ai and Bi are simply classical propositional formulae. Then

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 39

each Bi logically implies ¬l , since none of the Vi in N satisfy l . Each ni ∈ N
leads to a node nj satisfying Bi for some i. Thus nj must satisfy Bi ∧l or Bi ∧¬l .
By definition each successor of a node in N is also in N (as l is unsatisfied in all
nodes reachable from ni). As l is not satisfied by any node in N we have Bi ∧ l
is unsatisfiable, and thus Bi ⇒ ¬l is valid (in classical propositional logic).

Also each Bi logically implies the disjunction of the Ai ’s corresponding to
the successors of ni. As each node ni ∈ N leads to a node nj = (Vj , E j) that
satisfies Bi, by definition nj ∈ N and Vj satisfies Aj . Thus Bi ∧ ¬∨k Ak is
unsatisfiable. Hence Bi ⇒ ∨

k Ak . Hence, we can use SNFm PLTL-clauses of
the form (17) in an application of temporal resolution. Let A be the disjunction
of the Ai. Then each Vi satisfies ¬l ∧ A. For each node ni in N either there
is a PLTL-clause C ⇒ ♦l in S and the valuation at ni satisfies C, or for each
predecessor pi of ni the valuation at pi satisfies wl .

Let T be the result of adding the loop resolvents (10), (11), and (12) from
Section 4.3, and let H be the behavior graph for T . Then H has no nodes
from the set N . So H is a proper subgraph of G by Lemma 6.3.1, and T is
well-behaved by Lemma 6.2.1. Once again, it follows by induction that there is
a refutation for S.

6.4 Termination

THEOREM 6.4.1. The resolution algorithm will terminate.

PROOF. Following the translation to normal form the set of PLTL-clauses
is augmented, so no new proposition symbols are required during the proof.
Hence we have a finite number of proposition symbols. Further, there are a
finite number of right and left-hand sides we may obtain as initial and step
PLTL-clauses modulo ordering of the conjunctions or disjunctions. Simplifica-
tion rules mean that the left or right-hand sides cannot grow indefinitely. Note
that the number of sometime PLTL-clauses does not change. Thus step (3) of the
algorithm in Section 4.4 either generates start ⇒ false and terminates, or we
have tried to resolve each PLTL-clause with every other and obtained no new
PLTL-clauses, i.e., something that is not in the set already (modulo ordering of
conjunctions/disjunctions).

The argument is similar for the termination of step 5. Having augmented
the set of PLTL-clauses with the new proposition symbols needed to translate
resolvents from temporal resolution into SNF, at some point no new resolvents
will be generated, as we have a finite set of possible PLTL-clauses.

7. COMPLEXITY

We consider the increase in number of proposition symbols and PLTL-clauses
generated by the translation to SNF followed by consideration of the complexity
of the resolution proof method.

7.1 Translation to the Normal Form

We consider two aspects of the complexity of translating an arbitrary formula to
SNF in detail, namely the maximum number of SNF PLTL-clauses generated

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

40 • Michael Fisher et al.

from a formula of a given size, and the number of new proposition symbols in-
troduced. Note in this section we do not include the new wl proposition symbols,
as we consider this to be part of the resolution method itself.

7.1.1 Number of PLTL-Clauses Generated. We define the length “len” of a
formula A as follows.

len(♦l) = 1 (l is a literal)
len(l1 ∨ l2 . . . ∨ ln) = 1 (li are literals and n ≥ 1)

len(const) = 1 (const is one of true, ¬true, false or ¬false)
len(❢(l1 ∨ l2 . . . ∨ ln)) = 1 (li are literals and n ≥ 1)

len(A) =
len(♦A) = (A not a literal)
len(❢A) = 1 + len(A) (A not a disjunction of literals)

len(¬ A) =
len(¬♦A) =
len(¬ ❢A) = 1 + len(¬A)

len(A ∨ B) = (A and B not disjunctions of literals)
len(A ∧ B) =
len(AU B) =

len(AW B) = 1 + len(A) + len(B)

len(¬(A ∨ B)) =
len(¬(A ∧ B)) =
len(¬(AU B)) =

len(¬(AW B)) = 1 + len(¬A) + len(¬B)

len(¬(A ⇒ B)) = 1 + len(A) + len(¬B)
len(A ⇒ B) = 1 + len(¬A) + len(B)

LEMMA 7.1.1. For any proposition symbol x and PLTL formula W, the maxi-
mum number of PLTL-clauses, generated from the translation of τ1[(x ⇒ W)],
denoted by clauses(τ1[(x ⇒ W)]), will be at most 11 × len(W), i.e.,

clauses(τ1[(x ⇒ W)]) � (11 × len(W)).

PROOF. The proof is by induction on the length of W . The base case is where
W has length 1, i.e., it has the form ♦l , l1 ∨ . . . ∨ ln, true, false, ❢(l1 ∨ . . . ∨ ln).
As illustrated in Section 3.2 τ1[(x ⇒ ♦l)] produces one PLTL-clause,
τ1[(x ⇒ (l1 ∨ . . . ∨ ln))] produces two PLTL-clauses, τ1[(x ⇒ const)] pro-
duces two PLTL-clauses (where const is true, ¬true, false or ¬false), and
τ1[(x ⇒ ❢(l1 ∨ . . . ∨ ln))] produces one PLTL-clause. In each case if the num-
ber of PLTL-clauses produced is M , then

M � (11 × 1).

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 41

For the inductive hypothesis we assume that the theorem holds for formula
of length n and examine each case for length n+ 1. By considering the proofs
in Lemma A.1 in the Appendix, the maximum number of PLTL-clauses from
removing any operator (or negated operator) is 11 (from ¬(AW B)).

clauses(τ1[(x ⇒ ¬(AW B))]) = 11 + clauses(τ1[(y ⇒ ¬A)])
+ clauses(τ1[(z ⇒ ¬B)])

� (11 + (11 × len(¬A)) + (11 × len(¬B)))
= 11(1 + len(¬A) + len(¬B))
= 11 × len(¬(AW B))

clauses(τ1[(x ⇒ (AW B))]) = 6 + clauses(τ1[(y ⇒ A)])
+ clauses(τ1[(z ⇒ B)])

� (6 + (11 × len(A)) + (11 × len(B)))
� 11(1 + len(A) + len(B))
= 11 × len(AW B)

clauses(τ1[(x ⇒ A)]) = 6 + clauses(τ1[(y ⇒ A)])
� (6 + (11 × len(A)))
� 11(1 + len(¬A))
= 11 × len(A)

clauses(τ1[(x ⇒ (¬ A))]) = 1 + clauses(τ1[(y ⇒ ¬A)])
� (1 + (11 × len(¬A)))
� 11(1 + len(¬A))
= 11 × len(¬ A)

The cases for the other operators are similar.

THEOREM 7.1.1. For any PLTL formula W, the maximum number of PLTL-
clauses generated from the translation into SNF will be at most 1 + (11 ×
len(W)), i.e.,

clauses(τ0[W]) � (1 + (11 × len(W))).

PROOF. Let W be a PLTL formula. To transform it into SNF we apply the τ0
transformation, i.e.,

τ0[W] = τ1[(x ⇒ W)] ∧ (start ⇒ x).

From Lemma 7.1.1 we know the maximum number of PLTL-clauses from
τ1[(x ⇒ W)] is 11 × len(W); hence, the maximum number for the transla-
tion of W is 1 + (11 × len(W)).

7.1.2 Number of New Proposition Symbols Generated

LEMMA 7.1.2. For any proposition symbol x and PLTL formula W, the max-
imum number of new proposition symbols generated from the translation of
τ1[(x ⇒ W)], denoted by props(τ1[(x ⇒ W)]), will be at most 4 × len(W),
i.e.,

props(τ1[(x ⇒ W)]) � (4 × len(W)).

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

42 • Michael Fisher et al.

PROOF. The proof is by induction on the length of W . The base case is where
W has length 1, i.e., it has the form ♦l , l1 ∨ . . . ∨ ln, true, false, ❢(l1 ∨ . . . ∨
ln). Each of these produces no new proposition symbols, so as 0 � (4 × 1) we
are done. For the inductive hypothesis we assume that the theorem holds for
formulae of length n and examine each case for length n+ 1. Again we examine
some of the cases involved.

props(τ1[(x ⇒ ¬(AW B))]) = 4+props(τ1[(y ⇒¬A)])+props(τ1[(z⇒¬B)])
� (4 + (4 × len(¬A)) + (4 × len(¬B)))
= 4(1 + len(¬A) + len(¬B))
= 4 × len(¬(AW B))

props(τ1[(x ⇒ (AW B))]) = 3 + props(τ1[(y ⇒ A)]) + props(τ1[(z ⇒ B)])
� (3 + (4 × len(A)) + (4 × len(B)))
� 4(1 + len(A) + len(B))
= 4 × len(AW B)

props(τ1[(x ⇒ (A))]) = 2 + props(τ1[(y ⇒ A)])
� (2 + (4 × len(A)))
� 4(1 + len(A))
= 4 × len(A)

props(τ1[(x ⇒ (¬ A))]) = 1 + props(τ1[(y ⇒ ¬A)])
� (1 + (4 × len(¬A)))
� 4(1 + len(A))
= 4 × len(¬ A)

The cases for the other operators are similar.

THEOREM 7.1.2. For any PLTL formula W, the maximum number of new
proposition symbols, N, generated from the translation into SNF will be at most
1 + (4 × len(W)), i.e.,

N � 1 + (4 × len(W)).

PROOF. Let W be a PLTL formula. To transform it into SNF we apply the τ0
transformation, i.e.,

τ0[W] = τ1[(x ⇒ W)] ∧ (start ⇒ x).

From Lemma 7.1.2 we know the maximum number of new proposition sym-
bols from τ1[(x ⇒ W)] is 4 × len(W). Hence the maximum number for the
translation of W is 1 + (4 × len(W)).

7.2 Step Resolution

Both forms of step resolution are essentially equivalent to classical resolution,
for example the derivation of ❢false on the right-hand side of a step PLTL-
clause is essentially a classical resolution proof on the clauses of the right-hand
side of (a subset of) the step PLTL-clauses. The complexity of this phase of
the method is equivalent to the complexity of carrying out several classical
resolution proofs on (simple translations of) the SNF PLTL-clauses. Indeed,

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 43

one approach to the practical mechanization of step resolution has been to
translate the SNF PLTL-clauses in to a form suitable for a classical resolution
theorem prover [Dixon 2000].

7.3 Temporal Resolution

In order to consider the complexity of the temporal resolution phase, we describe
a (naive) algorithm to find PLTL-clauses with which to apply the temporal
resolution operation.

7.3.1 A Naive Algorithm for Loop Detection. Given a set of m step PLTL-
clauses, R, and an eventuality ♦l from the right-hand side of a sometime PLTL-
clause, we carry out the following.

(1) Construct the set of merged-SNF PLTL-clauses for the SNF PLTL-clauses in
R, i.e., apply the merged-SNF operation in Section 3.1 to each set of PLTL-
clauses in each member of the powerset of R obtaining the set of (SNFm)
PLTL-clauses, R∗.

(2) Delete any PLTL-clause X i ⇒ ❢Yi in R∗ such that it is not the case that
Yi ⇒ ¬l .

(3) Delete any SNFm PLTL-clauses X i ⇒ ❢Yi in R∗ such that it is not the case
that

Yi ⇒
∨

j

X j

where X j is the left-hand side of PLTL-clause j in R∗.
(4) Repeat 3 until no more SNFm PLTL-clauses can be deleted.

7.3.2 Correctness of Naive Algorithm

THEOREM 7.3.1. Given a set of step PLTL-clauses R and an eventuality ♦l ,
there is a loop in ¬l within R if, and only if, the above algorithm outputs a
nonempty set of PLTL-clauses L′.

PROOF. Consider a loop L in ¬l formed from the set of PLTL-clauses R. Let
the disjunction of the left-hand side of the SNFm PLTL-clauses in L be X . As L
is a loop the right-hand side of each SNFm PLTL-clause in L implies both ¬l and
X . Assume there are n SNFm PLTL-clauses in L. Each SNFm PLTL-clause (or
an equivalent SNFm PLTL-clause) in L must be in the set R∗ before deletions,
as L has been made by combining PLTL-clauses in R.

We next consider the deletion of any SNFm PLTL-clause in L from R∗. Step 2
of the algorithm will not remove any of the SNFm PLTL-clauses in L from R∗, as
it removes SNFm PLTL-clauses whose right-hand side do not imply ¬l , but, by
assumption, each SNFm PLTL-clause in L has a right-hand side that implies ¬l .
Assume we are about to remove an SNFm PLTL-clause P ⇒ ❢Q , contained in L
from the set R∗ using step 3 of the algorithm. Let Y be the disjunction of the left-
hand sides of the SNFm PLTL-clauses remaining undeleted in R∗ that are not in
L. Thus P ⇒ ❢Q is being deleted, as it is not the case that Q ⇒ X ∨ Y . How-
ever we know that Q ⇒ X , as L is a loop, so Q ⇒ X ∨Y must also hold giving a

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

44 • Michael Fisher et al.

contradiction. Hence none of the SNFm PLTL-clauses in L can be deleted from
R∗, so the algorithm must return a set of SNFm PLTL-clauses containing L.

Consider any set of SNFm PLTL-clauses L′ output by the algorithm. Each
SNFm PLTL-clause has been made by combining PLTL-clauses in R. Each
right-hand side implies ¬l ; otherwise it would have been deleted by step 2 of
the algorithm. Each right-hand side implies the disjunction of the left-hand
side of the set of SNFm PLTL-clauses; otherwise it would have been deleted
by step 3 of the algorithm. The set of SNFm PLTL-clauses satisfies the side
conditions for being a loop; hence this loop can be constructed by combining
the relevant PLTL-clauses in R.

7.3.3 Complexity of the Naive Algorithm. Next we consider the complexity
of detecting a set of PLTL-clauses in the way outlined above. We assume a set of
m step PLTL-clauses containing n proposition symbols. The cost of combining
the set of PLTL-clauses R is 2m. To check that the right-hand side of each
PLTL-clause implies ¬l we must check a truth table with 2n−1 lines. Thus for
2m PLTL-clauses we must check in total 2n−1 × 2m = 2m+n−1 lines. For step 3
the worst case is if one PLTL-clause is deleted from the set during each cycle
of deletions until all the PLTL-clauses are deleted. We must check that each
PLTL-clause implies the disjunction of the remaining left-hand sides, i.e., for
each right-hand side checked we must consider a truth table with 2n lines. Thus,
to check each PLTL-clause once has complexity of order 2m × 2n = 2m+n, and
to carry out 2m rounds of checking we require 22m+n. Hence, the complexity of
applying the resolution rule once is of order 22m+n.

This gives the worst-case bound for any loop checking algorithm. Refined
approaches to finding loops only improve the average performance [Dixon 1996;
1998].

7.4 Complexity of the Temporal Resolution Method

We consider the complexity of the whole method by looking at the behav-
ior graph used in the proof for completeness of temporal resolution. Assume
we have n proposition symbols (including those added for augmentation see
Section 6.1) and r eventualities. Deletions in the behavior graph represent ei-
ther a series of step resolution inferences or a temporal resolution inference.

The deletion of a terminal node (and edges into it) corresponds to construction
of a PLTL-clause A ⇒ ❢false, i.e., complexity of a classical resolution proof.
The deletion of a terminal subgraph (one or more nodes) with p an unsatisfied
eventuality corresponds to temporal resolution (with complexity 22m+n for m
PLTL-clauses). The worst case is if we have to delete each node separately, i.e.,
the worst-case complexity is the number of nodes multiplied by the maximum
of the complexity of a temporal resolution step and the complexity of classical
resolution, plus the complexity of classical resolution (i.e., resolution between
initial PLTL-clauses to finish the proof). Although the number of PLTL-clauses
we have may change at each step, the worst-case number of PLTL-clauses is
22n, i.e., 2n possible left-hand sides and 2n possible right-hand sides. Recall that
nodes in the behavior graph are pairs (V , E) where V is a valuation of the propo-
sition symbols in the PLTL-clause set and E is a subset of the eventualities.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 45

Thus the number of nodes in the behavior graph is 2n × 2r (where r � 2n), i.e.,
at worst 23n. Thus complexity is of the order 23n × 222n+1+n = 222n+1+4n.

We note that the complexity of satisfiability for PLTL is PSPACE complete
[Sistla and Clarke 1985]. The complexity for the resolution methods in Abadi
and Manna [1985], Cavalli and Fariñas del Cerro [1984], and Venkatesh [1986]
and the tableau method in Gough [1984] is not discussed in the relevant papers,
but the complexity for Wolper’s tableau [Wolper 1983] is given as exponential
in the length of the initial formula.

8. RELATED WORK

We consider three resolution-based approaches for PLTL (or similar languages)
and then several implemented methods for PLTL.

8.1 Resolution Methods for PLTL

8.1.1 Venkatesh. Venkatesh [1986] describes a clausal resolution method
for PLTL for future-time operators including U . First, formulae are translated
into a normal form containing a restricted nesting of temporal operators. The
normal form is

n∧
i=1

ci ∧
m∧

j=1

c′
j ,

where each ci and c′
j (known as clauses) is a disjunction of formulae of the form

❢kl , ❢k l , ❢k♦l , or ❢k(l ′ U l) (known as principal terms) for l and l ′ literals,
k � 0 and ❢k denoting a series of k ❢-operators.

The clauses in the normal form therefore either apply to the first moment in
time or to every moment in time (those enclosed in a -operator). Resolution
proofs are displayed in columns separating the clauses that hold in each state.
To determine unsatisfiability, the principal terms (except ❢kl) in each clause
are unwound to split them into present and future parts. For example the
clause F ∨ ♦l is replaced by F ∨ l ∨ ❢♦l and similarly for and U . Next,
classical-style resolution is carried out between complementary literals relating
to the present parts of the clauses in each column or state. Then, any clauses in
a state that contain only principal terms with one or more next operators are
transferred to the next state, and the number of next operators attached to each
term is reduced by one. This process is shown to be complete for clauses that
contain no eventualities. Formulae that contain eventualities that are delayed
indefinitely due to unwinding are eliminated, and this process is shown to be
complete.

This system makes use of a normal form which at the top level is similar
to ours, i.e., there are clauses that relate to to first moment in time (as do our
initial PLTL clauses) and to every moment in time (as our step and eventuality
PLTL-clauses). Venkatesh uses renaming to remove any nesting of operators,
as we do here, to rewrite into the normal form. Thus, as with our system, new
propositions are introduced into the normal form. The main difference is that
Ventatesh does not remove the temporal operators and U .

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

46 • Michael Fisher et al.

Our initial step resolution can be compared with the resolution of comple-
mentary literals in the first state, and step resolution is comparable to resolu-
tion of complementary literals in other states.

The main difference is the treatment of eventualities. The system described
in this article looks for sets of formulae with which to apply the temporal reso-
lution rule to generate additional constraints that must be fulfilled. Venkatesh
looks for persistent unfulfilled eventualities. In many ways the Venkatesh sys-
tem behaves like a temporal tableau system [Wolper 1983; Gough 1984], but
classical resolution inferences are applied within states. Repeated states con-
taining persistent eventualities are identified and the unresolved eventuali-
ties eliminated, similar to the check for unsatisfied eventualities in temporal
tableau.

The overall approach to the system described in this article generates con-
straints until we obtain a contradiction in the initial state start ⇒ false.
Venkatesh’s approach reasons forward carrying clauses that are disjunctions
of terms involving one or more next operator to the next moment, having deleted
a next operator. This forward reasoning approach seems similar to the work on
the executable temporal logics METATEM [Barringer et al. 1996].

8.1.2 Cavalli and Fariñas del Cerro. A clausal resolution method for PLTL
is outlined in Cavalli and Fariñas del Cerro [1984]. The temporal operators
defined in the logic include ❢, , and ♦ but do not include U . The method
described rewrites formulae to a complicated normal form and then applies a
series of temporal resolution rules.

A formula, F , is said to be in Conjunctive Normal Form (CNF), if it is of the
form

F = C1 ∧ C2 ∧ . . . ∧ Cn

where each Cj is called a clause and is of the following form.

Cj = L1 ∨ L2 ∨ . . . ∨ Ln ∨ D1 ∨ D2 ∨ . . . ∨ Dp

∨♦A1 ∨ ♦A2 ∨ . . . ∨ ♦Aq

Here each Li is a literal preceded by a string of zero or more ❢-operators; each
Di is a disjunction of the same general form as the clauses; and each Ai is a con-
junction where each conjunct possesses the same general form as the clauses.
The resolution operations are split into three types, classical operations, tem-
poral operations, and transformation operations. The former apply the classical
resolution rule and classical logic rewrites, the latter two are required for ma-
nipulations of temporal operators. For example a temporal operation is of the
form that x and ♦ y can be resolved if x and y are resolvable, and the resol-
vent will be the resolvent of x and y with a ♦-operator in front.

Formulae are refuted by translation to normal form and repeated application
of the inference rules. Resolution only takes place between clauses in the context
of certain operators outlined in the resolution rules.

The method is only similar to our method as it uses translation to a clause
form, although the normal form is much more complicated. The rules required
to rewrite formulae into the normal form depend on temporal theorems and

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 47

classical methods. Renaming and the introduction of new proposition symbols
are not required.

The temporal and transformation operations take account of the temporal
operators to make sure that contradictory formulae occur at the same moment
in time. In our system this is done by translating to the normal form followed by
initial and step resolution. Several operations are defined to deal with eventu-
alities; for example the temporal operation given above, whereas we have just
the one temporal resolution rule. The following complex transformation opera-
tion can be applied to an eventuality and is required to deal with the induction
between and ❢

�3(♦E, F) = E ∨ ❢E ∨ . . . ❢n−1 E ∨
�i(♦(¬E ∧ ❢¬E ∧ . . . ∧ ❢n−1¬E ∧ ❢nE), F)

And if E ∨ ❢E ∨ . . . ❢n−1 E or (♦(¬E ∧ ❢¬E ∧ . . . ∧ ❢n−1¬E ∧ ❢nE), F)
is resolvable then (♦E, F) is resolvable

where �i denotes the further application of a classical, temporal, or transfor-
mation operation and where ❢n−1 denotes a string of n− 1 next operators. The
method is only described for a subset of the operators that we use, i.e., a less
expressive logic. Further, the completeness proof is only given for the , ♦, and
❢operators. An implementation of the method has been developed; however it

is not clear when to apply each operation to lead toward a proof.

8.1.3 Abadi. Nonclausal temporal resolution systems are developed for
propositional [Abadi and Manna 1985] and then first-order temporal logics
[Abadi and Manna 1990] that are discrete and linear and have finite past
and infinite future. The systems are developed first for fragments of the
logic including the temporal operators ❢, , and ♦ and then extended for
❢, , ♦, W 2, and P. The binary operator P is known as precedes where

uPv = ¬((¬u)W v).
Because the system is nonclausal many simplification and inference rules

need to be defined. The resolution rule is of the form

A〈u, . . . , u〉, B〈u, . . . , u〉 −→ A〈true〉 ∨ B〈false〉
where A〈u, . . . , u〉 denotes that u occurs one or more times in A. Here occur-
rences of u in A and B are replaced with true and false respectively. To ensure
the rule is sound each u that is replaced must be in the scope of the same number
of ❢-operators, and must not be in the scope of any other modal operator in A
or B, i.e., they must apply to the same moment in time. Other rules such as dis-
tribution and modality rules allow the format of the expression to be changed,
for example the -modality rule allows any formula u to be rewritten as
u ∧ ❢ u.

The induction rule deals with the interaction between ❢ and and is of
the form

w, ♦u −→ ♦(¬u ∧ ❢(u ∧ ¬w)) if � ¬(w ∧ u).

2Abadi denotes W , unless (or weak until), as U .

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

48 • Michael Fisher et al.

Informally this means that if w and u cannot both hold at the same time and if
w and ♦u hold now then there must be a moment in time (now or) in the future
when u does not hold and at the next moment in time u holds and w does not.
Both systems are shown complete. A proof editor has been developed for the
propositional system with the ❢, , and ♦ operators.

As there is no translation to a normal form many rules need to be specified
to allow for every different combination of operators. The resolution rule only
allows resolution of formulae within the same number of next operators and can
perhaps be compared with our step resolution rule except, due to our uniform
normal form, our step resolution rule is much easier to apply. Finally the rule
that corresponds with our temporal resolution rule is the induction rule. This
rule can only be applied if a complex side condition is checked.

Although a proof editor has been developed for the restricted propositional
system it seems unlikely that Abadi’s system lends itself to a fully automatic
implementation. This is because of the large number of rules that may be ap-
plied. Further, the induction rule requires a proof as a side condition to its usage
which will make automatic proofs difficult. The implementation of the induc-
tion rule is not discussed. The temporal resolution rule we have described in
this article is also complex; however we have considered its implementation in
Dixon[1996; 1998] and developed a fully automatic prototype theorem prover
based on this.

8.2 Implementations

We now briefly mention several implementations available for linear time tem-
poral logics. The Logics Workbench [Jaeger et al. 2000], a theorem-proving sys-
tem for various modal logics available over the Web, has a module for dealing
with logics such as PLTL [Schwendimann 1998]. The implementation of this
module is based on tableau with an analysis of strongly connected components
to deal with eventualities. A tableau-based theorem prover for PLTL, called
DP, has also been developed [Gough 1984]. Finally, the STeP system [Bjorner
et al. 1995], based on ideas presented in Manna and Pnueli [1992; 1995], and
providing both model checking and deductive methods for PLTL-like logics, has
been used in order to assist the verification of concurrent and reactive systems
based on temporal specifications.

9. SUMMARY

In this article we have described, in detail, a clausal resolution method for
propositional linear temporal logic (PLTL), and have considered its soundness,
completeness, termination, and complexity. The method is based on the transla-
tion to a concise normal form, and the application of both step resolution (essen-
tially classical resolution) and temporal resolution operations. Since temporal
logics such as PLTL are useful for describing reactive systems, the resolution
method has a variety of applications in verifying properties of complex systems.
We believe that this resolution system can form the basis of an efficient tempo-
ral theorem proving system that can outperform other systems developed for
such logics. However, there is still work to be done in order to realize this.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 49

9.1 Future Work

A prototype version of this system has been implemented in Prolog, primarily to
test the loop search algorithms required for the temporal resolution rule [Dixon
1996]. A more refined C++ version, known as CLATTER, is currently under devel-
opment. Both these systems utilize the fact that step resolution is very similar
to classical resolution and consequently use a resolution theorem prover for
classical logic, namely OTTER, to implement this part of the system [Dixon 2000].

The normal form used in this article (SNF) has been extended to apply to
other logics such as branching-time temporal logics [Bolotov and Fisher 1997]
and multimodal logics involving both a temporal and a modal dimension [Dixon
et al. 1998]. Much of our current work involves extending the clausal resolution
approach to a wider variety of temporal and modal logics. In each of these logics,
not only must a version of SNF be defined, but specialized resolution operations
must be developed dependent on the properties of the logic in question.

Just as strategies for classical resolution have been successful in improv-
ing efficiency, we aim to develop similar strategies for temporal resolution. In
particular, we are interested in the most efficient way to apply the resolution
operations in order to reduce the number of resolution inferences that are made
that do not contribute toward finding a proof. The work described in Dixon and
Fisher [1998] outlines preliminary steps in the definition of a temporal set of
support. The set of support strategy for classical resolution restricts the number
of resolution inferences that can be made. Inferences can only be made where
one of the clauses being resolved is from a subset of the full clause set known as
the set of support. Thus if we are asked to prove that B is a logical consequence
of A (or A � B) in resolution we would try show that A ∧ ¬B is unsatisfiable.
To use the set of support strategy the clauses derived from A are separated
from those derived from ¬B, the latter being put into the set of support. Thus
resolution inferences between two clauses derived from A are avoided. We are
also developing and applying a modified resolution operation that can be used
in a more flexible way, and can be used with strategies such as set of support.
Initial results can be found in Fisher and Dixon [2000].

Finally as efficient subsets of classical logic such as Horn clauses, have been
investigated we hope to define restrictions on the normal form that allow tem-
poral resolution to be carried out more efficiently and investigate the classes of
problem these subsets correspond to.

APPENDIX

A. PROOFS FOR TRANSFORMATION INTO SNF

Here we present several lemmas required for the proof of Theorem 3.3.1 show-
ing the translation to SNF is satisfiability preserving. The transformations τ0
and τ1 are defined in Section 3.2, and new proposition symbols generated are
shown in bold.

Firstly, we show that
|= τ0[W] ⇒ W,

i.e., any model for the transformed formula is a model for the original. However
before we show this we first prove a lemma.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

50 • Michael Fisher et al.

LEMMA A.1. For all PLTL formulae W

|= τ1[(x ⇒ W)] ⇒ (x ⇒ W)

where x is a proposition symbol.

PROOF. The proof is carried out by induction on the structure of W . For the
base cases we have the following.

1. τ1[(x ⇒ ♦l)] = (x ⇒ ♦l)
2. τ1[(x ⇒ l1 ∨ . . . ∨ ln)] = (start ⇒ ¬x ∨ l1 ∨ . . . ∨ ln)∧

(true ⇒ ❢(¬x ∨ l1 ∨ . . . ∨ ln))
⇒ (x ⇒ (l1 ∨ . . . ∨ ln))

3. τ1[(x ⇒ true)] = (start ⇒ true) ∧
(true ⇒ ❢true)

⇒ (x ⇒ true)
4. τ1[(x ⇒ false)] = (start ⇒ ¬x) ∧

(true ⇒ ❢¬x)
⇒ (x ⇒ false)

5. τ1[(x ⇒ ❢(l1 ∨ . . . ∨ ln))] = (x ⇒ ❢(l1 ∨ . . . ∨ ln))

Now, we assume that the lemma holds for A, B, ¬A, and ¬B, e.g., τ1[(x ⇒
A)] ⇒ (x ⇒ A), and show it holds for all combinations of operators or negated
operators, e.g., A ∧ B, ¬(A ∧ B), A, ¬ A. We consider the cases for A,
¬ A, AW B, and ¬(AW B) and note that proofs for the other operators are
similar (where v, w, y, and z are new proposition symbols):

τ1[(x ⇒ A)] = τ1[(x ⇒ y)] ∧ τ1[(y ⇒ A)]
= τ1[(x ⇒ y)] ∧ τ1[(x ⇒ z)] ∧ (z ⇒ ❢y)∧

(z ⇒ ❢z) ∧ τ1[(y ⇒ A)]
⇒ (start ⇒ ¬x ∨ y) ∧ (true ⇒ ❢(¬x ∨ y))∧

(start ⇒ ¬x ∨ z) ∧ (true ⇒ ❢(¬x ∨ z))∧
(z ⇒ ❢y) ∧ (z ⇒ ❢z) ∧ (y ⇒ A)

⇒ (x ⇒ A)

where τ1[(y ⇒ A)] ⇒ (y ⇒ A) from the induction hypothesis:

τ1[(x ⇒ ¬ A)] = (x ⇒ ♦y) ∧ τ1[(y ⇒ ¬A)]
⇒ (x ⇒ ♦y) ∧ (y ⇒ ¬A)
⇒ (x ⇒ ♦¬A)
⇒ (x ⇒ ¬ A)

where τ1[(y ⇒ ¬A)] ⇒ (y ⇒ ¬A) from the induction hypothesis:

τ1[(x ⇒ (AW B))] = τ1[(x ⇒ yW z)] ∧ τ1[(y ⇒ A)] ∧ τ1[(z ⇒ B)]
= τ1[(x ⇒ y ∨ z)] ∧ τ1[(x ⇒ w ∨ z)]∧

(w ⇒ ❢(y ∨ z)) ∧ (w ⇒ ❢(w ∨ z))∧
τ1[(y ⇒ A)] ∧ τ1[(z ⇒ B)]

⇒ (start ⇒ ¬x ∨ y ∨ z) ∧ (true ⇒ ❢(¬x ∨ y ∨ z))∧
(start ⇒ ¬x ∨ w ∨ z) ∧ (true ⇒ ❢(¬x ∨ w ∨ z))

∧ (w ⇒ ❢(y ∨ z)) ∧ (w ⇒ ❢(w ∨ z))∧
(y ⇒ A) ∧ (z ⇒ B)

⇒ (x ⇒ (AW B))

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 51

τ1[(x ⇒ ¬(AW B))] = τ1[(x ⇒ (yU v)] ∧ τ1[(v ⇒ (y ∧ z))]∧
τ1[(y ⇒ ¬B)] ∧ τ1[(z ⇒ ¬A)]

= τ1[(x ⇒ v ∨ y)] ∧ τ1[(x ⇒ v ∨ w)]∧
(x ⇒ ♦v) ∧ (w ⇒ ❢(v ∨ y))∧
(w ⇒ ❢(v ∨ w)) ∧ τ1[(v ⇒ (y ∧ z))]∧

τ1[(y ⇒ ¬B)] ∧ τ1[(z ⇒ (¬A))]
⇒ (start ⇒ ¬x ∨ v ∨ y) ∧ (true ⇒ ❢(¬x ∨ v ∨ y))∧

(start ⇒ ¬x ∨ v ∨ w) ∧ (true ⇒ ❢(¬x ∨ v ∨ w))
∧ (x ⇒ ♦v)∧

(w ⇒ ❢(v ∨ y)) ∧ (w ⇒ ❢(v ∨ w))∧
(start ⇒ ¬v ∨ y) ∧ (start ⇒ ¬v ∨ z)∧
(true ⇒ ❢(¬v ∨ y)) ∧ (true ⇒ ❢(¬v ∨ z))∧
(y ⇒ ¬B) ∧ (z ⇒ (¬A))

⇒ (x ⇒ ((¬B)W (¬A ∧ ¬B))) ∧ (x ⇒♦(¬A ∧ ¬B))
⇒ (x ⇒ ((¬B)U (¬A ∧ ¬B)))
⇒ (x ⇒ ¬(AW B))

LEMMA A.2. For all PLTL formulae W

|= τ0[W] ⇒ W.

PROOF. For any PLTL formula W , the first step in the transformation is to
anchor W to the first moment in time, i.e., τ0[W] −→ (start ⇒ x)∧τ1[(x ⇒
W)]. From Lemma A.1 we have shown that τ1[(x ⇒ W)] ⇒ (x ⇒ W).
Thus, as x holds at the first moment in time and the transformation implies
that (x ⇒ W) holds at every moment in time, then W also holds now.

Next we show that for any satisfiable formula its translation is also satisfi-
able, i.e., for any PLTL formula W , if W is satisfiable then τ0[W] is satisfiable.
This is established by showing that given a model for a formula at some stage
in the transformation process for each step carried out in the transformation
we can find a model for the transformed formula.

Definition A.1 (Pre-PLTL-Clause Form). A PLTL formula is said to be in
pre-PLTL-clause from if, and only if, it has the structure

(xi ⇒ Wi)

where xi is a proposition symbol (or start) and Wi is a PLTL formula.

LEMMA A.3. Let σ be a model such that

(σ, 0) |=
[∧

h

Rh

]
∧ (x ⇒ W)

where each Rh is in pre-PLTL-clause form (i.e., an implication where the propo-
sition symbol on the left-hand side of each implication may be different). Then,
there exists a model σ ′ such that

(σ ′, 0) |=
[∧

h

Rh

]
∧
∧

j

S j ∧
∧
k

Tk

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

52 • Michael Fisher et al.

where Rh is in pre-PLTL-clause form, Sj is in pre-PLTL-clause form, and Tk is
in PLTL-clause form resulting from one step of the τ1 transformation, i.e.,

τ1[(x ⇒ W)] −→
[∧

j

τ1[Sj]

]
∧
∧
k

Tk .

PROOF. We examine the structure of W . There are three main types of trans-
formation that can be applied: the removal of classical operators, the renaming
of complex subformulae, and the rewriting of temporal operators applied to
literals. We begin by considering the removal of classical operators.

First, assume W is a conjunction A ∧ B, i.e.,

(σ, 0) |=
[∧

h

Rh

]
∧ (x ⇒ (A ∧ B)).

Applying the τ1 translation we have

τ1[(x ⇒ (A ∧ B))] −→ τ1[(x ⇒ A)] ∧ τ1[(x ⇒ B)],

so we must show there is a model σ ′ such that

(σ ′, 0) |=
[∧

h

Rh

]
∧ (x ⇒ A) ∧ (x ⇒ B).

Now, as (σ, 0) |= (x ⇒ (A ∧ B)) for all i ∈ N, then if (σ, i) |= x both (σ, i) |= A
and (σ, i) |= B. That is

(σ, 0) |=
[∧

h

Rh

]
∧ (x ⇒ A) ∧ (x ⇒ B).

So, by setting σ ′ equal to σ we have such a model. The proofs are similar for
the other classical logic operators.

Next, we consider renaming transformations and assume W is of the form
A where A is not a literal. Now, assume that there exists a σ such that

(σ, 0) |=
[∧

h

Rh

]
∧ (x ⇒ A).

By applying the τ1 transformation, we have

τ1[(x ⇒ A)] −→ τ1[(x ⇒ y)] ∧ τ1[(y ⇒ A)]

where y is a new proposition symbol. Thus, we must show that there exists a
model σ ′ such that

(σ ′, 0) |=
[∧

h

Rh

]
∧ (x ⇒ y) ∧ (y ⇒ A).

First assume that x is never satisfied in σ . A model σ ′ identical to σ except it
contains the variable y such that y is false everywhere will suffice. Otherwise
let j be the first place that x is satisfied in σ . As (σ, 0) |= (x ⇒ A) for all
i ≥ j then (σ, i) |= A. Let σ ′ be the same as σ except it contains a new proposition

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 53

symbol y that is satisfied in all i ≥ j and unsatisfied elsewhere, i.e., 0 ≤ i < j .
Thus, as σ ′ is identical to σ , except for y, we have (σ ′, i) |= A for all i ≥ j , and
from the definition of σ ′ we have for all i ≥ j , (σ ′, i) |= y and, for all i < j ,
(σ ′, i) |= ¬y. Thus, from the semantics of PLTL, (σ ′, 0) |= (y ⇒ A). Now,
as (σ ′, i) |= y for all i ≥ j then (σ ′, j) |= y from the semantics of . Also, as
(σ ′, j) |= x and by assumption j is the first place x is satisfied in σ and therefore
σ ′, (σ ′, 0) |= (x ⇒ y). Further

(σ ′, 0) |=
∧
h

Rh

as

(σ, 0) |=
∧
h

Rh

from our choice of σ ′. Hence

(σ ′, 0) |=
[∧

h

Rh

]
∧ (x ⇒ y) ∧ (y ⇒ A)

as desired. The proof of other renaming operations is similar.
Finally we consider the removal of unwanted temporal operators. Again, we

let W be A, but this time assume that A is a literal. Assume that there exists
a σ such that

(σ, 0) |=
[∧

h

Rh

]
∧ (x ⇒ A).

By applying the τ1 transformation we obtain

τ1[(x ⇒ A)] −→ τ1[(x ⇒ A)] ∧ τ1[(x ⇒ y)] ∧ (y ⇒ ❢A)∧
(y ⇒ ❢y)

where y is a new proposition symbol. Thus, we must show that there exists a
model σ ′ such that

(σ ′, 0) |=
[∧

h

Rh

]
∧ (x ⇒ A) ∧ (x ⇒ y) ∧ (y ⇒ ❢A) ∧ (y ⇒ ❢y).

First assume that x is never satisfied in σ . Similarly to the above, a model σ ′

identical to σ except containing the variable y such that y is false everywhere
will suffice. Otherwise let j be the first place that x is satisfied in σ . Let σ ′ be
the model that is identical to σ except it contains the variable y such that for
all i ≥ j , (σ ′, i) |= y and for all 0 ≤ i < j , (σ ′, i) |= ¬y. Thus, as σ is the same as
σ ′ except for the valuation of y, and

(σ, 0) |=
∧
h

Rh,

then we have

(σ ′, 0) |=
∧
h

Rh.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

54 • Michael Fisher et al.

We have assumed that (σ, 0) |= (x ⇒ A), so for all i ≥ j , (σ, i) |= A; hence
for all i ≥ j , (σ ′, i) |= A. Thus, as (σ ′, j) |= x, where j is the first place that x
holds and for all i ≥ j , (σ ′, i) |= A we have (σ ′, 0) |= (x ⇒ A). Now as j is the
first place that x holds and (σ ′, i) |= y for all i ≥ j we have (σ ′, 0) |= (x ⇒ y)
and (σ ′, 0) |= (y ⇒ ❢y). Also, as i ≥ j , (σ, i) |= A then, due to our choice of
σ ′, for all i ≥ j , (σ ′, i) |= A and so (σ ′, 0) |= (y ⇒ ❢A). Hence

(σ ′, 0) |=
[∧

h

Rh

]
∧ (x ⇒ A) ∧ (x ⇒ y) ∧ (y ⇒ ❢A) ∧ (y ⇒ ❢y)

as required.

LEMMA A.4. Given a model σ , and a PLTL formula W, such that (σ, 0) |= W,
there exists a model σ ′ such that (σ ′, 0) |= τ0[W].

PROOF. Firstly note that if (σ, 0) |= W then there is a model σ ′′ such that

(σ ′′, 0) |= (start ⇒ y) ∧ (y ⇒ W).

The model σ ′′ is identical to σ except it includes the new proposition symbol y
which is set to true where i = 0 and false everywhere else. Applying τ0 to W ,
we obtain

(start ⇒ y) ∧ τ1[(y ⇒ W)].

Now, from Lemma A.3, and given that (start ⇒ y)∧ (y ⇒ W) has a model σ ′′

every application of the τ1 transformation can be satisfied in some new model.
Hence, if W has a model then there exists a model that satisfies τ0[W].

ACKNOWLEDGMENTS

We would like to thank Howard Barringer, Graham Gough, Alexander Bolotov,
Ullrich Hustadt, and Anatoli Degtiarev for their helpful comments and sugges-
tions about this work. The authors would also like to extend their gratitude to
all the anonymous referees for their hard work. Their dedication and time spent
reviewing this article is much appreciated and has led to a greatly improved
article.

REFERENCES

ABADI, M. AND MANNA, Z. 1985. Nonclausal Temporal Deduction. Lecture Notes in Computer Sci-
ence 193, 1–15.

ABADI, M. AND MANNA, Z. 1990. Nonclausal Deduction in First-Order Temporal Logic. ACM Jour-
nal 37, 2 (Apr.), 279–317.

ARTALE, A. AND FRANCONI, E. 1999. Introducing Temporal Description Logics. In Proceedings of the
Sixth International Workshop on Temporal Representation and Reasoning (TIME-99), C. Dixon
and M. Fisher, Eds. IEEE Computer Society Press, Orlando, Florida. ISBN 0-7695-0173-7.

BARRINGER, H., FISHER, M., GABBAY, D., OWENS, R., AND REYNOLDS, M., Eds. 1996. The Imperative
Future: Principles of Executable Temporal Logic. Research Studies Press.

BJORNER, N., BROWNE, A., CHANG, E., COLÓN, M., KAPUR, A., MANNA, Z., SIPMA, H. B., AND URIBE, T. E.
1995. STeP The Stanford Temporal Prover Educational Release Version 1.0 User’s Manual.
Computer Science Department, Stanford University, California 94305.

BOLOTOV, A. AND FISHER, M. 1997. A Resolution Method for CTL Branching-Time Temporal Logic.
In Proceedings of TIME-97 the Fourth International Workshop on Temporal Representation and
Reasoning. IEEE Computer Society Press, Daytona Beach, Florida, 20–27.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

Clausal Temporal Resolution • 55

BURGESS, J. P. AND GUREVICH, Y. 1985. The Decision Problem for Linear Temporal Logics. Notre
Dame Journal of Formal Logic 26, 2 (Apr.), 115–128.

CAVALLI, A. AND FARIÑAS DEL CERRO, L. 1984. A Decision Method for Linear Temporal Logic. In
Proceedings of the 7th International Conference on Automated Deduction, R. E. Shostak, Ed.
Lecture Notes in Computer Science, vol. 170. Springer-Verlag, 113–127.

CHANG, C. L. AND LEE, R. C. T. 1973. Symbolic Logic and Mechanical Theorem Proving. Academic
Press.

DIXON, C. 1996. Search Strategies for Resolution in Temporal Logics. In Proceedings of the Thir-
teenth International Conference on Automated Deduction (CADE), M. A. McRobbie and J. K.
Slaney, Eds. Lecture Notes in Artificial Intelligence, vol. 1104. Springer-Verlag, New Brunswick,
New Jersey, 672–687.

DIXON, C. 1998. Temporal Resolution using a Breadth-First Search Algorithm. Annals of Math-
ematics and Artificial Intelligence 22, 87–115.

DIXON, C. 2000. Using Otter for Temporal Resolution. In Advances in Temporal Logic. Applied
Logic Series, vol. 16. Kluwer, 149–166. Proceedings the Second International Conference on
Temporal Logic (ICTL). ISBN 0-7923-6149-0.

DIXON, C. AND FISHER, M. 1998. The Set of Support Strategy in Temporal Resolution. In Proceed-
ings of TIME-98 the Fifth International Workshop on Temporal Representation and Reasoning.
IEEE Computer Society Press, Sanibel Island, Florida.

DIXON, C., FISHER, M., AND JOHNSON, R. 1995. Parallel Temporal Resolution. In Proceedings of
TIME-95 the Second International Workshop on Temporal Representation and Reasoning. Mel-
bourne Beach, Florida.

DIXON, C., FISHER, M., AND WOOLDRIDGE, M. 1998. Resolution for Temporal Logics of Knowledge.
Journal of Logic and Computation 8, 3, 345–372.

EMERSON, E. A. 1990. Temporal and Modal Logic. In Handbook of Theoretical Computer Science,
J. van Leeuwen, Ed. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 996–1072.

EMERSON, E. A. AND SRINIVASAN, J. 1988. Branching Time Temporal Logic. Lecture Notes in Com-
puter Science 354, 123–172.

FISHER, M. 1991. A Resolution Method for Temporal Logic. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufman, Sydney, Australia,
99–104.

FISHER, M. 1992. A Normal Form for First-Order Temporal Formulae. In Proceedings of Eleventh
International Conference on Automated Deduction (CADE). Lecture Notes in Computer Science,
vol. 607. Springer-Verlag, Saratoga Springs, New York, 370–384.

FISHER, M. 1997. A Normal Form for Temporal Logic and its Application in Theorem-Proving
and Execution. Journal of Logic and Computation 7, 4 (Aug.), 429–456.

FISHER, M. AND DIXON, C. 2000. Guiding Clausal Temporal Resolution. In Advances in Temporal
Logic. Applied Logic Series, vol. 16. Kluwer, 167–184. Proceedings the Second International
Conference on Temporal Logic (ICTL). ISBN 0-7923-6149-0.

FISHER, M. AND NOËL, P. 1992. Transformation and Synthesis in METATEM—Part I: Proposi-
tional METATEM. Technical Report UMCS-92-2-1, Department of Computer Science, University
of Manchester, Oxford Road, Manchester M13 9PL, U.K. Feb.

GABBAY, D., PNUELI, A., SHELAH, S., AND STAVI, J. 1980. The Temporal Analysis of Fairness. In
Proceedings of the Seventh ACM Symposium on the Principles of Programming Languages. Las
Vegas, Nevada, 163–173.

GABBAY, D. M. 1987. Declarative Past and Imperative Future: Executable Temporal Logic for In-
teractive Systems. In Proceedings of Colloquium on Temporal Logic in Specification, B. Banieqbal,
H. Barringer, and A. Pnueli, Eds. Lecture Notes in Computer Science, vol. 398. Springer-Verlag,
Altrincham, U.K., 402–450.

GOUGH, G. D. 1984. Decision Procedures for Temporal Logic. M.S. thesis, Department of Com-
puter Science, University of Manchester. Also University of Manchester, Department of Computer
Science, Technical Report UMCS-89-10-1.

HAREL, D. AND PNUELI, A. 1985. On the Development of Reactive Systems. Tech. Rep. CS85-02,
Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel. Jan.

HOLZMANN, G. J. 1997. The Model Checker Spin. IEEE Trans. on Software Engineering 23, 5
(May), 279–295. Special Issue on Formal Methods in Software Practice.

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

56 • Michael Fisher et al.

HORROCKS, I. 1998. The FaCT System. In Automated Reasoning with Analytic Tableaux and
Related Methods: International Conference (Tableaux’98). LNCS, vol. 1397. Springer-Verlag, 307–
312.

HUSTADT, U. AND SCHMIDT, R. 1999. An Empirical Analysis of Modal Theorem Provers. Journal of
Applied Non-Classical Logics 9, 4, 479–522.

JAEGER, G., BALSIGER, P., HEUERDING, A., SCHWENDIMANN, S., BIANCHI, M., GUGGISBERG, K., JANSSEN, G.,
HEINLE, W., ACHERMANN, F., BOROUMAND, A. D., BRAMBILLA, P., BUCHER, I., AND ZIMMERMANN, H. 2000.
LWB–The Logics Workbench 1.1. http://www.lwb.unibe.ch/. University of Berne, Switzerland.

LAMPORT, L. 1983. Specifying Concurrent Program Modules. ACM Transactions on Programming
Languages and Systems 5, 2 (Apr.), 190–222.

LICHTENSTEIN, O., PNUELI, A., AND ZUCK, L. 1985. The Glory of the Past. In Logics of Programs
(Proc. Conf. Brooklyn USA 1985), R. Parikh, Ed. Lecture Notes in Computer Science, vol. 193.
Springer-Verlag, Berlin, 196–218.

MANNA, Z. AND PNUELI, A. 1992. The Temporal Logic of Reactive and Concurrent Systems: Speci-
fication. Springer-Verlag, New York.

MANNA, Z. AND PNUELI, A. 1995. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York.

MCCUNE, W. 1994. OTTER 3.0 Reference Manual and Guide. Argonne National Laboratory, 9700
South Cass Avenue, Argonne, Illinois 60439-4801.

PLAISTED, D. A. AND GREENBAUM, S. A. 1986. A Structure-Preserving Clause Form Translation.
Journal of Symbolic Computation 2, 3 (Sept.), 293–304.

PNUELI, A. 1977. The Temporal Logic of Programs. In Proceedings of the Eighteenth Symposium
on the Foundations of Computer Science. Providence.

PRIOR, A. 1967. Past, Present and Future. Oxford University Press.
ROBINSON, J. A. 1965. A Machine–Oriented Logic Based on the Resolution Principle. ACM Jour-

nal 12, 1 (Jan.), 23–41.
SCHWENDIMANN, S. 1998. A New One-Pass Tableau Calculus for PLTL. In Proceedings of Tableaux

98, H. de Swart, Ed. Lecture Notes in Artificial Intelligence, vol. 1397. Springer-Verlag, 277–291.
SISTLA, A. P. AND CLARKE, E. M. 1985. Complexity of Propositional Linear Temporal Logics. ACM

Journal 32, 3 (July), 733–749.
SISTLA, A. P., VARDI, M., AND WOLPER, P. 1987. The Complementation Problem for Büchi Automata

with Applications to Temporal Logic. Theoretical Computer Science 49, 217–237.
STEEDMAN, M. 1997. Temporality. In Handbook of Logic and Language. Elsevier North Holland,

895–935.
STIRLING, C. 1992. Modal and Temporal Logics. In Handbook of Logic in Computer Science. Oxford

University Press.
TANSEL, A., Ed. 1993. Temporal Databases: theory, design, and implementation. Benjamin/

Cummings.
VENKATESH, G. 1986. A Decision Method for Temporal Logic Based on Resolution. Lecture Notes

in Computer Science 206, 272–289.
WEIDENBACH, C. 1997. Spass: Version 0.49. Journal of Automated Reasoning 18, 247–252.
WOLPER, P. 1983. Temporal Logic Can Be More Expressive. Information and Control 56, 72–99.
WOS, L., OVERBEEK, R., LUSK, E., AND BOYLE, J. 1984. Automated Reasoning—Introduction and

Applications. Prentice-Hall, Englewood Cliffs, New Jersey.

Received July 1999; revised December 1999 and June 2000; accepted June 2000

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.

