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Abstract This paper �rstly provides a re�appraisal of the development of
techniques for inverting deduction� secondly introduces Mode�Directed Inverse
Entailment �MDIE� as a generalisation and enhancement of previous approaches
and thirdly describes an implementation of MDIE in the Progol system� Progol is
implemented in C and available by anonymous ftp� The re�assessment of previous
techniques in terms of inverse entailment leads to new results for learning from
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� Introduction

Since its inception in this journal ��	
 Inductive Logic Programming �ILP� has
grown to become a substantial sub�area of both Machine Learning and Logic Pro�
gramming �see ���
�� The success of the subject lies partly in the choice of the
core representation language of logic programs� Least Herbrand models of logic
programs ��

 �t neatly with the distinction between examples and conjectured
theories in inductive inference� The syntax of logic programs provides modu�
lar blocks which� when added or removed� generalise or specialise the program�
Depth�bounded Prolog interpreters� used for theorem�proving� allow e�cient test�
ing of hypothesised Horn clause theories� Most importantly� Turing�equivalence
of logic programs is allowing a broader range of Machine Learning applications
in ILP than was possible with more restrictive representations�
Recent research in ILP has spawned a variety of new theoretical topics� These

include the problem of inverting resolution ���� 
	� ��
� inversion of clausal im�
plication ���� 	�� ��
� predicate invention ��

� closed�world specialisation �	
 and
U�learnability ���
� As with any subject� the diversity of sub�topics can be better
understood by following the development of a particular line of ideas� The aims
of this paper are �rstly to provide a re�appraisal of the development of techniques
for inverting deduction� secondly to introduce Mode�Directed Inverse Entailment
�MDIE� as a generalisation and enhancement of previous approaches and thirdly
to describe an implementation of MDIE in the Progol� system�
At each stage in the development of ILP there has been an attempt to solve

existing technical restrictions of implemented systems� The �ve main approaches
described in this paper are as follows�

	� Inverse resolution �IR� in propositional logic�

�� IR in �rst�order de�nite clause logic�

�� determinate relative least general generalisation�

�� inverse implication and

�� mode�directed inverse entailment�

The paper is structured as follows� First the logical and statistical setting for
ILP are introduced �Section ��� This is followed by a synopsis of the results and
restrictions for approaches 	 to � �Sections � to 
�� The remainder of the paper
�Sections � to 	�� deals with theoretical and practical aspects of mode�directed
inverse entailment� Instructions for obtaining Progol by anonymous ftp are given
in Section 		� The paper closes with a discussion of research issues related to
inverse entailment� Standard de�nitions taken from Logic Programming and

�Prolog inverted in the middle�

	



ILP are given in Appendix A� In Appendix B a statistical setting for ILP is
described� Properties of the subsumption lattice are described in Appendix C�
The algorithms used in Progol are given in Appendix D� A table of Progol�s
runtimes on various data sets is presented in Appendix E�

� Logical and statistical setting for ILP

Deductive inference derives consequences E from a prior theory T � Thus if T says
that all swans are white� E might state that a particular swan is white� Inductive
inference derives a general belief T from speci�c beliefs E� After observing one
or more white swans T might be the conjecture that all swans are white� In both
deduction and induction T and E must be consistent and

T j� E� �	�

The requirement of consistency means that the observation of a black swan rules
out conjecture T � Inductive inference is� in a sense� the inverse of deduction�
However� deductive inference proceeds by application of sound rules of inference�
while inductive inference typically involves unsound conjecture� Such conjectures
have at best statistical support from observed data� However� the association
of probability values with hypotheses requires the assumption of a prior prob�
ability distribution over the hypothesis language� Occam�s razor can be taken
as an instance of a distribution which assigns higher prior probability to simpler
hypotheses� It has been shown ��
 that without such distributional assumptions
the class of all logic programs is not even PAC�predictable� On the other hand� it
has recently been demonstrated ���
 that the class of all time�bounded logic pro�
grams is polynomial�time learnable �U�learnable� under fairly broad families of
prior probability distributions� Appendix B gives more details of the relationship
between data� posterior probabilities and U�learnability�
Within ILP it is usual to separate the elements of �	� into examples �E��

background knowledge �B�� and hypothesis �H�� These have the relationship

B �H j� E� ���

B� H and E are each logic programs� E usually consists of ground unit clauses
of a single target predicate� E can be separated into E�� ground unit de�nite
clauses and E�� ground unit headless Horn clauses� However� the separation into
B� H and E is a matter of convenience� as the following example shows�

Example � White swans� The swan example might be represented using the
following logic program�

E� �

�
white�swan	��
swan�swan	��
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E� �

�
black�swan���
swan�swan���

B �
n
� black�X�� white�X�

H �
n
white�X�� swan�X�

Relationship ��� does not hold since swan�swan	� is not entailed by B � H� It
does not help to argue that swan�swan	� is background knowledge� since this is an
observations about swan�� E� does not contain headless Horn clauses� although
together with B it refutes H� These problems can most simply be avoided by
dropping all but the restriction that B� H and E are arbitrary logic programs�

� Inverse resolution in propositional logic

The idea of carrying out induction by inverting deduction was �rst investigated
in depth mathematically by the 	�th century political economist and philosopher
of science Stanley Jevons �	

�� Jevons solved by tabulation the �Inverse or In�
ductive Problem� involving two propositional symbols� The following quote from
Jevons� book on inductive inference �	

 is both modern�sounding and relevant
to the problems addressed in this paper�

Induction is� in fact� the inverse operation of deduction� and cannot
be conceived to exist without the corresponding operation� so that
the question of relative importance cannot arise� Who thinks of ask�
ing whether addition or subtraction is the more important process in
arithmetic� But at the same time much di�erence in di�culty may
exist between a direct and inverse operation� the integral calculus� for
instance� is in�nitely more di�cult than the di�erential calculus of
which it is the inverse� Similarly� it must be allowed that inductive
investigations are of a far higher degree of di�culty and complexity
than any questions of deduction� ���

At the time of Jevons logicians� not yet persuaded of Boole�s algebraic approach
to logic� employed an array of inference rules derived from Aristotelian syllogisms�
Robinson ���
 was later to show that deductive inference in �rst�order predicate
calculus could be e�ected by a single rule of inference� that of resolution� In�
ductive inference based on inverting resolution in propositional logic was �rst
discussed in ���
 �originally a technical report from 	���� as an analysis of the
inductive inference rules within the Duce system ���
�

�George Boole�s algebraic approach to deduction inspired Jevons to use truth�functional
tabulations to design and build a logical calculator ����� Jevons� mechanicalOrganon is complete
for deciding satis�ability of propositional clauses in 	 variables
 and can be found in the Museum
of Scienti�c Instruments in Oxford�
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��� Inductive inference rules

Duce had six inductive inference rules� Four of these were concerned with de��
nite clause propositional logic� In the following description of the inference rules
lower�case letters represent propositional variables and upper�case letters repre�
sent conjunctions of propositional variables�

Absorption�
p� A�B q� A

p� q�B q� A

Identi�cation�
p� A�B p� A� q
q� B p� A� q

Intra�construction�
p� A�B p� A�C

q� B p� A� q q � C

Inter�construction�
p� A�B q� A�C

p� r�B r� A q� r� C

Each of Duce�s rules is super�cially similar to that of a deductive rule of inference
of the form

X

Y

Such a deductive inference rule would be called sound if and only if X entailed Y �
We will call a rule of inference inductively sound if and only if Y logically entails
X� or equivalently X entails Y � A set of inductive inference rules will be written
with an overline as I� Each clause above the line is either a resolvent of two clauses
below the line or is itself found below the line� Duce�s inference rules invert single�
depth applications of resolution� Using the rules a set of resolution�based trees
for deriving the examples can be constructed backwards from their roots� The
set of leaves of the trees represent a theory from which the examples can be
derived� In the process new proposition symbols� not found in the examples� can
be �invented� by the intra� and inter�construction rules�

��� Completeness

Continuing the analogy with deduction we might write

X �I Y

to say that theory Y is derivable using inductive inference rules I from examples
X� There are two senses in which a set of inference rules I may be said to be
complete�
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De�nition � Weak completeness� Let the example language E and hypothesis
language H both be subsets of the �rst	order predicate calculus and let I be a set
of inductive inference rules� I is said to be weak complete for E and H if and
only if for each H � H there exists E � E such that E �I H�

In ���
 it was shown that I consisting of only absorption and intra	construction
is weak complete under particular hypothesis and example language restrictions�

De�nition � Strong completeness� Let the example language E and hypoth	
esis language H both be subsets of the �rst	order predicate calculus and let I be
a set of inductive inference rules� I is said to be strong complete for E and H if
and only if for each H � H and E � E H j� E implies E �I H�

The four Duce inference rules in Section ��	 are not strong complete for de�nite
clause propositional calculus�

��� Occam compression

In Duce every application of an inductive inference rule X
Y
was chosen to maximise

information compression�

De�nition � Occam compression� Let X�Y be w
s for which Y j� X and
X � Y �j� �� Let jXj and jY j be the number of bits required to encode X and Y �
The Occam compression of X relative to Y is jXj � jY j�

Suppose jP j � b�symbols�P � where symbols�P � is the number of propositional
symbol occurrences in P and b is the number of bits to encode each such oc�
currence� With reference to Appendix B� an encoding is the expression of a
prior distribution� F �P � expresses the relative frequency with which the teacher
chooses P as target concept� Assume the learner knows F �P � and uses it as
a prior distribution on H� Then according to Shannon and Weaver ��

 jP j is
�log�F �P � and

F �P � � ��jP j

Note that since this is an exponential	decay distribution� in the situation in which
the learner knows F �P �� the results in ���
 show that the class of all time	bounded
logic programs are polynomial	time learnable �U	learnable�� However� note also
that if the teacher�s prior is known to the learner then on average theories chosen
by the teacher have extremely low information content� Alternatively this might
be viewed as the expectation that only a small augmentation of an existing theory
is expected from any short presentation of the teacher�s examples�

Remark 	 Let E be a w
 and H be a set of w
s containing E such that for each
H � H it is the case that H j� E and H � E �j� �� Let Hmax have maximum
compression within H relative to E and let H� have compression � relative to E�
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Figure 	� Single resolution�

Hmax has maximum posterior probability and H� has posterior probability equal
to E�
Proof� According to Equation ��� in Appendix B��

p�HjE�

p�EjE�
�
p�H�

p�E�
� �jEj�jHj�

p�HjE� is maximal when jEj � jHj is maximal� When jEj � jHj � � then
p�HjE� � p�EjE�� �

The hypothesis with maximum posterior probability �Hmax� has maximum ex�
pected predictive accuracy�

� Inverse resolution in �rst�order logic

Inverse resolution was lifted to �rst�order predicate calculus in ���
� This involved
algebraic inversion of the equations of resolution below�

D � �C � C �����

l� � l���

Figure 	 shows a resolution step� D is derived at the base of the �V� given the
clauses on the arms� In contrast� a �V� inductive inference step derives one of
the clauses on the arm of the �V� given the clause on the other arm and the
clause at the base� In Figure 	 the literal resolved on is positive ��� in C and
negative ��� in C �� Duce�s absorption rule constructs C � from C and D� while the
identi�cation rule derives C from C � and D�
Since algebraic inversion of resolution has a complex non�deterministic solu�

tion only a restricted form of absorption was implemented in Cigol�� However�

�logiC backwards�






it was shown independently in ��	
 and ���
 that there is a unique most�speci�c
solution for �V� inductive inference rules� That is

C � 	 � �D � l��

where � is such that C� � D� Rather than inverting the equations of resolution
we might consider resolution from the model�theoretic point of view� That is

C � C � j� D� ���

Applying the deduction theorem gives a deductive solution for absorption�

C �D j� C �

This is a special case of inverting implication �Section ��� Since D and C � are
clauses� D and C � are conjunctions of ground skolemised literals� The most spe�
ci�c solution for C � corresponds to the most general solution for C �� i�e� when C �

contains the maximum set of literals derivable from C �D� However� this solu�
tion is neither restricted to single�depth resolutions� nor is the clause cardinality
�nitely bounded�

Example 
 Recursive list membership� Let C � member�X� �XjY 
� and
D � member��� �	� �� �
��

C �D j� member��� �	� �� �
�

j� member�	� �	� �� �
�

j� member��� ��� �
�

j� member��� ��
�

j� ���

Though the clause C � � member��� �	� �� �
� � member�	� �	� �� �
�� �� maintains
Relationship ���� there are at least � derivation steps to D� C � is �	subsumed
by all single	step resolution solutions� C � also contains the in�nite sequence of
atoms member��� ��� �
�� member��� ��� �� �
�� � � ��

Owing to the weak completeness results for the Duce inductive inference rules
�Section ���� only absorption and intra�construction were implemented in Cigol�

��� Compression

Like Duce� Cigol used Occam compression �De�nition �� to guide the choice of
inverse resolution steps� The encoding measure was the total number of predicate
and function symbol occurrences in a logic program� Like Duce� each such inverse
resolution step was only allowed if it produced a positive compression value� This
lead to two di�culties�
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	� Local generalisation� Consider the recursive multiplication clause

mult�A�B�C�� dec�A�D��mult�D�B�E�� plus�E�B�C��

When given a large set of ground instances of valid multiplications� com�
pression is only achievable after a series of inverse resolution steps� in which
all steps except the last do not produce compression�

�� Learning from positive examples� In ���
 it was noted that the com�
pression measure used in Cigol did not allow learning from only posi�
tive data since the simplest possible hypothesis� say 
X�p�X�� will al�
ways be consistent� Alternative compression measures were suggested in
���� ��� �� �
� These measures are closely allied to Rissanen�s Minimal De�
scription Length �MDL� Principle ���� ��
�

The �rst problem was addressed by considering the inversion of multiple reso�
lution steps by saturating clauses ���� ��� �	� 	�
� Clause saturation is closely
related to the techniques of inverse entailment described in Section �� However�
since saturation is based on inverting resolution proof steps� it cannot deal with
built�in predicates� Nevertheless� the interpretations of such predicates can be
computed by calling C functions� The Progol system �Sections � to 		� uses mode
declarations to access such interpretations�

��� Learning from positive data

The second problem is of a di�erent nature� When learning from only posi�
tive data� predictive accuracy will be maximised by choosing the most general
consistent hypothesis since this will always agree with new data� However� in
applications such as grammar learning ���� ��
� only positive data are available�
though the grammar which produces all strings is not an acceptable hypothesis�
Let us then suppose a modi�cation to the U�learning setting given in Appendix
B� The teacher still draws instances randomly from distribution G but only gives
them to the learner if they are positive examples of the target T � In this setting
we would need to �nd a tradeo� between the generality and complexity of an
hypothesis� First let us de�ne a measure of the generality of an hypothesis�

De�nition � Generality measure� Let H be a w
 and G be a probability
distribution over a �possibly in�nite� set of w
s X� The generality g of H is
de�ned as

g�H� �
X

x�X�Hj�x

G�x��

SinceG is a probability distribution it follows for everyH � H that � � g�H� � 	�
g�H� is the probability that an instance drawn randomly from G will be entailed
by H� Note therefore that g��� � 	� g� � � � and T� j� T� implies g�T�� � g�T���
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Clearly for in�nite instance spaces g�H� cannot be calculated exactly� However�
according to the Central Limit Theorem� given a su�ciently large random sample
S from G� the proportion of S entailed by H is an arbitrarily good estimate of
g�H�� Now consider the following probability distribution�

fm�H� � c���jHj�	� g�H��m�

m is the number of examples so far and c is a normalising constant to ensure
that for H � H the function fm sums to 	� fm trades o� the complexity of an
hypothesis against its generality� Note that since fm varies with m� it cannot
be viewed as a prior distribution over hypotheses� As with MDL fm increases
the discrimination against over�generality with increasing numbers of examples�
When used to choose between hypotheses given positive�only data fm has the
following convergence property�

Theorem � Finite elimination of false conjectures with positive�only
data� Let T be an element of the set of w
s H and let G be a probability dis	
tribution over the set of w
s X such that x � X has non	zero probability in G
if and only if T j� x� Let T � be the minimal complexity expression of T in H�
Let hx�� x�� � � �i be an in�nite series of w
s drawn randomly according to G� Let
fi�H� have value ��jHj�	 � g�H��i for all those H in H which entail each xj�
	 � j � i� and have value � otherwise� Let H be any element of H such that
H does not entail the same subset of X as T � Then there exists a �nite natural
number k such that fk�H� � fk�T ���
Proof� Suppose there is an H for which there is no such k� It cannot be the
case for H that g�H� � g�T �� and jHj � jT �j since otherwise for all i� i � ��
fi�H� � fi�T ��� Therefore suppose g�H� � g�T �� and jHj � jT �j� But then since
�	 � g�H��i decreases monotonically with i there must exists k such that for all
j � k it is the case that fj�H� � fj�T ��� Therefore it must be that jHj � jT �j and
g�H� � g�T ��� But then there exists k and xk such that T � j� xk and H �j� xk and
therefore fk�H� � � � fk�T ��� This contradicts the assumption and completes the
proof� ��

fm provides the basis for a simpli�ed version of the compression models de�ned
in ���� ��
�

De�nition 
 Positive�only compression� Let H be a w
 and G be a distri	
bution over instance space X� Let E � X be a set of m examples of H� Let
jHj and jEj be the number of bits required to encode H and E� The positive	only

�At �rst sight
 this theorem appears to clash with the fundamental result of Gold ���� that
not even the regular languages can be identi�ed in the limit from positive data alone� However

it cannot be guaranteed after any �nite number of examples that all H which are not over�
general have lower values of fm than T ��
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compression of E to H is

pcomp�H�E� � log�
fm�H�

fm�E�

� jEj � jHj �m�log��	 � g�E�� � log��	� g�H���


 jEj � jHj�mlog��	 � g�H���

The approximation in the last line applies for small m� in which case g�E� is
close to ��

� Relative least general generalisations

One commonly advocated approach to learning from positive data is that of
taking relative least general generalisations �rlggs� of clauses �see Appendix C��
Suppose� as in the last section� that the teacher chooses target T and presents
to the learner examples E � fx�� x�� ��� xmg� Given background knowledge B�
H � rlggB�E� will be the hypothesis within the relative subsumption lattice
with the fewest possible errors of commission �instances x � X for which H j� x
and T �j� x�� This approach to learning from positive data has the following
problems�

	� Arbitrary background knowledge� Plotkin ���
 showed that with un�
restricted de�nite clause background knowledge B there may not be any
�nite rlggB�E��

�� Extensional background knowledge� Suppose B and E consist of n
and m ground unit clauses respectively� In the worst case the number of
literals in rlggB�E� will be �n � 	�m� making the construction intractable
for large m�

�� Multiple clause hypothesis� Target concepts with multiple clauses can�
not be learned since rlggB�E� is a single clause�

In contrast� none of these problems occur if H is chosen from the set of all de��
nite clause theories H using maximum positive�only compression �De�nition ���
Suppose E � H and H is the hypothesis with maximum positive�only compres�
sion� As with rlggB�E�� H will be maximally speci�c among clauses of the same
complexity� Also H will always have complexity of at most that of E� Lastly H
can be a multiple clause hypothesis�

��� Golem

Golem was designed to overcome the search problems of Cigol �Section ��	�� The
unique construction of rlggs contrasts with the highly non�deterministic choices
involved in inverting a resolution step�
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Golem used extensional background knowledge to avoid the problem of non�
�nite rlggs� Extensional background knowledge B can be generated from in�
tensional background knowledge B� by generating all ground unit clauses deriv�
able from B� in at most h resolution steps� The parameter h is provided by
the user� The rlggs constructed by Golem were forced to have only a tractable
number of literals by requiring that H contain de�nite clause theories that were
ij�determinate� The idea behind ij�determinacy is as follows� Let C be a de�nite
clause of the form


 �X�h� b�� b�� ��� bn

where �X is the vector of all variables within C� Suppose that �Y are the variables
in the head of C and �Z are the variables found only in the body of C� C can
equivalently be written


�Y �h� ���Zb�� b�� ��� bn��

Determinacy is a constraint which restricts the quanti�cation on variables �Z
in the body of de�nite clauses to Hilbert �� �exists exactly one� quanti�cation�
This is equivalent to requiring that predicates in the background knowledge must
represent functions� Thus for every example e and hypothesised clause C there
must exist at most one valid substitution for the variables �Z in the body of C�
j�determinate clauses are constrained to having at most j variables in any literal�
ij�determinate clauses are further restricted that each variable has depth at most
depth i� For variable v the depth d�v� is de�ned recursively as follows�

De�nition �� Depth of variables�

d�v� �

�
� if v is in the head of C
�maxu�Uvd�u�� � 	 otherwise

where Uv are the variables in atoms in the body of C containing v�

Multiple clause theories could be learned by Golem due to the use of negative
examples� Each clause was built from the rlgg of a set of positive examples�
Negative examples were used to stop rlggs becoming over�general�

��� Application experience

Golem was the �rst ILP system to be applied to a wide variety of real�world
applications� These included the construction of a satellite fault diagnosis model
��
� the design of a qualitative physics model ��
� �nite�element mesh design �

�
protein secondary structure prediction ���
 and structure�activity prediction for
drugs �	�
� In the qualitative physics domain Golem was hampered in requir�
ing a large tabulation of the QSIM simulator� The determinacy restriction was
inappropriate in the �nite element mesh design application� The restrictions of
Golem and other ILP algorithms are discussed in ���
�

		



Golem was also applied to various list and number�theoretic learning tasks
involving the construction of recursive theories� Learning recursive theories was
awkward using Golem partly because intensional hypothesised base cases could
not be used to augment the entirely extensional background knowledge� Also
Golem�s search was through the subsumption lattice� rather than the lattice of
implication between clauses�

� Implication between clauses

In ���
 Plotkin noted that if clause C ��subsumes clause D �or C � D� then
C � D� However� he also notes that C � D does not imply C � D� as shown
by the following example�

Example �� Implication and subsumption� Consider the following clauses�

C � nat�s�X�� � nat�X�
D � nat�s�s�Y��� � nat�Y�

C � D but not C � D�

Although e�cient methods are known ���
 for enumerating every clause C which
��subsumes an arbitrary clause D� this is not the case for clauses C which imply
D� This is known as the problem of inverting implication between clauses� The
inability to invert implication between clauses limits the completeness of inverse
resolution and rlggs since ��subsumption is used in place of clause implication in
both�
Gottlob �		
 proves a number of properties concerning implication between

clauses� The following lemma is notable�

Lemma �� Gottlob�s lemma� Let C�D be two non	tautological clauses� Let
C�� C� be the sets of positive and negative literals of clauses C and D��D� be
the same for D� C � D implies that C� � D� and C� � D��

In an attempt to solve the inverting implication problem Lapointe and Matwin
���
 introduced sub�uni�cation� a process of matching sub�terms in D to produce
C� They demonstrate that sub�uni�cation is able to construct recursive clauses
from fewer examples than would be required by ILP systems such as Golem ���

and FOIL ���
� Although the operations described by Lapointe and Matwin are
shown to work on a number of examples it is not clear how general the mechanism
is� Various general properties of implication between clauses are investigated in
���
� In particular it is shown that Lee�s subsumption lemma ���
 has the following
corollary�

Corollary �� Implication and recursion� Let C�D be clauses� C � D if
and only if either D is a tautology or C � D or there is a clause E such that
E � D where E is constructed by repeatedly self	resolving C�
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Thus the di�erence between ��subsumption and implication between C and D is
only pertinent when� as in Example 		� C can self�resolve� Attempts were made to
a� extend inverse resolution ���
 and b� use a mixture of inverse resolution and lgg
�	�
 to solve the problem� The extended inverse resolution method in ���
 su�ers
from the same problems of non�determinacy as Cigol� Idestam�Almquist�s �	�
 use
of lgg su�ers from the standard problem of intractably large clauses �see Section
��� Both approaches are incomplete for inverting implication� though Idestam�
Almquist�s technique is complete for a restricted form of entailment called T �
implication�
In ���
 it is shown that for certain recursive clauses D all the clauses C which

imply D also ��subsume a logically equivalent clause D�� Up to renaming of
variables every clause D has at most one most speci�c form of D� in the ��
subsumption lattice� D� is called the self�saturation of D� The self�saturation of
D in Example 		 is simply C �D� However� it is shown in ���
 that there exist
de�nite clauses which have no �nite self�saturation�

��� Inverting entailment between clauses

This section gives a complete and e�cient method for inverting implication be�
tween function�free de�nite clauses� The techniques used are based on inverting
entailment using the deduction theorem� First we de�ne de�nite sub�saturants�

De�nition �� De�nite sub�saturants� Let D � h � b�� ��� bn be a de�nite
clause� Let B�D� be the Herbrand base of D restricted to the predicate symbol of
h and let M�D� be the minimal Herbrand model of D� Let desk�a� be the atom
a with skolem constants in D replaced by their corresponding variables in D� Let
A�D� be B�D��M�D�� The sub	saturants of D� S�D� are the set of all de�nite
clauses desk�a�� b�� ��� bn for which a � A�D��

Although arbitrary de�nite clauses can have an in�nite sub�saturant set� this is
not so for function�free de�nite clauses� It is now shown for function�free clauses
that if k is a bound on the arity of predicates then the cardinality of the sub�
saturant set is polynomially bounded in the number of variables in D�

Remark �	 Cardinality of sub�saturant set� Let D be a function	free def	
inite clause� k be the arity of the predicate symbol in the head of D� n be the
number of variables in D and S�D� be the sub	saturants of D� The cardinality of
S�D� is at most nk�
Proof� The arguments of the heads of clauses in S�D� are k	length permutations
of variables in D� There are nk such permutations� �

We now present the main theorem concerning sub�saturants�

Theorem �
 Let C and D be de�nite non	tautological clauses and S�D� be the
sub	saturants of D� C j� D only if there exists C � in S�D� such that C � C ��
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Proof� Suppose C j� D and there does not exist C � in S�D� such that C � C ��
According to Lemma �� the heads of C and D have the same predicate symbol�
Since C j� D it follows that C � D is not satis�able� According to Herbrand�s
theorem this is the case if and only if C �D has no Herbrand model� According
to Lemma �� the body of C �	subsumes the body of D and therefore there exists
a ground �skolemised� substitution � for which all elements in the body of C are
true in the least model of D� Therefore with substitution � the head of C must
be false in the least Herbrand model of D since otherwise C �D has a Herbrand
model� But according to the construction in De�nition �� for every such C with
the same predicate symbol as D there is a C � in S�D� such that C � C �� This
contradicts the assumption and completes the proof� �

This theorem can be used to e�ciently enumerate all function�free de�nite clauses
C such that C j� D� First the �nite set of sub�saturants S�D� is constructed�
Then the clauses which ��subsume any clause in S�D� are enumerated using an
e�cient interleaved enumeration of the subsumption lattice� Since function�free
�rst�order predicate calculus is decidable the clauses C for which C j� D can be
enumerated by testing C �D � ��

Example �� Factorial� x� � �x � ����x � 	�x is an overly speci�c recurrence
formula for the factorial function� This formula can be represented by the clause

D � f�I� J�� d�I�K�� d�K�L�� f�L�M��m�K�M�N��m�I�N� J�

where the predicate symbols are f �factorial� d �decrement� m �multiply� Since
there are �� variables in D it follows from Remark ���� that the cardinality of
S�D� is at most 	�� � 	�
� S�D� contains the clause

C � � f�K�N�� d�I�K�� d�K�L�� f�L�M��m�K�M�N��m�I�N� J��

The following clause C which implies D �but does not �	subsume D� corresponds
to the most general recurrence for factorial� x� � �x� 	��x�

C � f�K�N�� d�K�L�� f�L�M��m�K�M�N��

The following example demonstrates how clauses with function symbols� such as
those in Example 		� can be dealt with as though they were function�free by
using �attening ���
�

Example �� Flattening and inverse implication� The clause D �
nat�s�s�X���� nat�X� can be �attened to the function	free clause D� � nat�V ��
s�V�W �� s�W�X��nat�X� where s is de�ned as s�X� s�X��� There are � sub	
saturants ofD�� which areD� itself and C �� � nat�W �� s�V�W �� s�W�X��nat�X�
which is �	subsumed by C � � nat�W �� s�W�X��nat�X�� C � can be un�attened
to the following clause which implies but does not �	subsume D�

C � nat�s�X��� nat�X�
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	 Inverting entailment

Inverse resolution and other subsumption oriented approaches to induction have
been re�assessed in previous sections of this paper� It has been demonstrated that
a great deal of clarity and simplicity can be achieved by approaching the problem
from the direction of model�theory rather than resolution proof�theory� In Duce
an inductive inference rule X

Y
is sound in the deductive sense if viewed as stating

the relationship X j� Y � In Cigol all solutions for absorption are found by simply
rewriting the inductive speci�cation C � C � j� D by the equivalent deduction
oriented relationship C �D j� C �� Lastly� it has been shown in this paper that
a solution to Plotkin�s �� year old problem of generalising ��subsumption can be
achieved with relative ease by simply viewing solutions for C in C j� D �given
D� as clauses which eliminate Herbrand models of C �D�
Let us now consider the general problem speci�cation of ILP �Section �� in

this light� That is� given background knowledge B and examples E �nd the
simplest consistent hypothesis H �where simplicity is measured relative to a prior
distribution� such that

B �H j� E� ���

It was demonstrated in Example 	 that in general B� H and E could be arbitrary
logic programs� Each clause in the simplest H should explain at least one exam�
ple� since otherwise there is a simplerH � which will do� Consider then the case of
H and E each being single Horn clauses� This can now be seen as a generalised
form of absorption �Relation ��� in Section �� and rearranged similarly to give

B � E j� H

Since H and E are each single clauses� H and E will be logic programs consisting
only of ground skolemised unit clauses� Let � be the �potentially in�nite� con�
junction of ground literals which are true in all models of B � E� Since H must
be true in every model of B � E it must contain a subset of the ground literals
in �� Therefore

B � E j� � j� H

and so for all H
H j� ��

A subset of the solutions for H can be found by considering the clauses which
��subsume �� The complete set of candidates for H can be found by considering
all clauses which ��subsume sub�saturants of � �Section 
�	��

Example �
 Various examples of �� Figure � shows various B� E and ��
In the �rst case� the clauses which �	subsume � include all those which could be
reached using �rst	order absorption �Section ��� In the second case the de�nite
clauses which �	subsume � are those which could be reached by a �rst	order ver	
sion of Duce�s identi�cation operator �Section ����� This form of identi�cation is
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B E �
anim�X�� pet�X�� nice�X�� dog�X�� nice�X�� dog�X�� pet�X��
pet�X�� dog�X�� anim�X��
hasbeak�X�� bird�X�� hasbeak�tweety�� hasbeak�tweety�� bird�tweety��
bird�X�� vulture�X�� vulture�tweety��
white�swan	�� � black�swan	�� � black�swan	�� white�swan	��
sentence��
��
�� sentence��a�a�a
��
�� sentence��a�a�a
��
��

sentence��
��
��

Figure �� The most�speci�c clause ��� for various versions of background knowl�
edge �B� and example �E��

a general form of Kakas et al�s abduction ���
 and is of central interest in �theory
revision� �alterations in theory revision range over all de�nitions within a hierar	
chical set of predicates which reference each other�� The third case demonstrates
that constraints �headless Horn clauses� can be learned from negative examples
since the clause

� black�X�� white�X�

�	subsumes �� In the fourth case one of the clauses which �	subsumes a sub	
saturant of the �attened � �see Example ��� is the DCG grammar rule

sentence��ajX
� Y �� sentence�X�Y ��


 The de�nite mode language

In general � can have in�nite cardinality� Progol uses mode declarations to
constrain the search for clauses which ��subsume � �see last Section��

De�nition �� Mode declaration� A mode declaration has either the form
modeh�n�atom� or modeb�n�atom� where n� the recall� is either an integer� n � 	�
or ��� and atom is a ground atom� Terms in the atom are either normal or place	
marker� A normal term is either a constant or a function symbol followed by a
bracketed tuple of terms� A place	marker is either �type� 	type or �type� where
type is a constant� If m is a mode declaration then a�m� denotes the atom of m
with place	markers replaced by distinct variables� The sign of m is positive if m
is a modeh and negative if m is a modeb�

For instance the following are mode declarations�

modeh�	�plus��int��int��int�� modeb���append��list��list��list�
modeb�	�append��list���any
��list�� modeb�����int �  int��

	




The recall is used to bound the number of alternative solutions for instantiating
the atom� For simplicity� we assume in the following that all the modes have the
recall ���� meaning all solutions� The following de�nes when a clause is within
Progol�s de�nite mode language L�

De�nition �� De�nite mode language� Let C be a de�nite clause with a
de�ned total ordering over the literals and M be a set of mode declarations� C �
h� b�� ��� bn is in the de�nite mode language L�M� if and only if �� h is the atom
of a modeh declaration in M with every place	marker �type and 	type replaced by
variables and every place	marker �type replaced by a ground term and �� every
atom bi in the body of C is the atom of a modeb declaration in M with every
place	marker �type and 	type replaced by variables and every place	marker �type
replaced by a ground term and �� every variable of �type in any atom bi is either
of �type in h or of 	type in some atom bj� 	 � j � i�

Like Golem� Progol constructs clauses of bounded depth �see De�nition 	� in
Section ��	��

De�nition �� Depth�bounded mode language� Let C be a de�nite clause
with a de�ned total ordering over the literals and M be a set of mode declarations�
C is in Li�M� if and only if C is in L�M� and all variables in C have depth at
most i according to De�nition ���

Example �� Factorial revisited� Reconsider Example �� with M being

modeh���f��int�	int�� modeb���d��int�	int�
modeb���f��int�	int�� modeb���m��int�	int��

The clause
f�A�B�� d�A�C�� f�C�D��m�A�D�B�

is only in Li�M� for i � ��

��� Most	speci
c clauses in Li�M �

Progol searches a bounded sub�lattice for each example e relative to background
knowledge B and mode declarations M � The sub�lattice has a most general
element ��� which is the empty clause� �� and a least general element �i which
is the most speci�c element in Li�M� such that

B � �i � e �h �

where �h � denotes derivation of the empty clause in at at most h resolutions�

De�nition �� Most�speci�c clause �i� Let h� i be natural numbers B be a
set of Horn clauses� e � a � b�� ��� bn be a de�nite clause� M be a set of mode
declarations containing exactly one modeh m such that a�m� � a and � be the
most	speci�c �potentially in�nite� de�nite clause such that B � � � e �h �� �i

is the most	speci�c clause in Li�M� such that �i � ��
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Progol constructs �i using Algorithm �� in Appendix D�	�

Theorem �	 Correctness of Algorithm ��� Let h� i�B�M be de�ned as in
De�nition ��� Given h� i�B� e and M Algorithm �� returns an alphabetic variant
of �i�
Proof� By induction on i� Let i be �� In step � the head of �� is within the
de�nite mode language of M �De�nition ��� since every �type and 	type place	
marker is replaced by variables� every �type place	marker is replaced by ground
terms and every variable has depth � �De�nition ���� By construction the head ah
of the returned �� �	subsumes a since inverting the one	one function hash gives a
substitution from the variables in ah to the terms in a� This substitution is most
speci�c since every variable is replaced by a unique term� This proves the base
case� Suppose that for all i up to and including k Algorithm �� correctly constructs
a most	speci�c clause �k such that �k is the most	speci�c clause in Lk�M� which
�	subsumes �� It is now shown that this implies the same will hold for k � 	�
Consider step � for k�	� The �type place	markers in the atom of m are replaced
by variables of depth at most k which represent terms in InTerms� These terms
must either have been placed in InTerms as �type in the head �step �� or 	type
from step � at an earlier value of k� 	type place	markers are replaced by variables
of depth at most k�	 and �type by ground terms� Therefore �k�� is in Lk���M��
Also by construction ab subsumes an atom in the body of � with substitution �b�
and the substitution is most speci�c since all variables map to unique terms in
�� T �m� corresponds to all combinations of �type substitutions� which makes
�k�� an alphabetic variant of the maximally speci�c clause in Lk���M� which
�	subsumes �� This proves the step and completes the proof� �

The time�complexity of Algorithm �� is proportional to the cardinality of �i�

Theorem �
 Cardinality of �i� Let h� i�B�M be de�ned as in De�nition ��
and let jM j denote the cardinality of M � Let the number of �type and 	type
occurrences in each modeh in M be bounded by constants j� and j� respectively�
Let the number of �type and 	type occurrences in each modeb in M be bounded by
j� and j� respectively� Let the recall of each m in M be bounded by the constant
r� The cardinality of �i is bounded by �rjM jj�j��ij

�

�
Proof� By induction� The clause �� contains only a head so its cardinality is ��
This proves the base case� Assume true for all i up to and including k and show
for i � k � 	� The number of terms associated with �type in the head or 	type
in the body of �k is j��rjM jj�j��kj

�

� These can be used to replace j� �type
place	markers in jM j modeb declarations and the atom can be recalled r times�
giving a cardinality of �k�� of at most �rjM jj�j���k��	j

�

� This proves the step
and completes the proof� �

By default i � � in Progol and typically j� � �� However� since in most cases
relatively few atoms are true in the least Herbrand model of B�e when jM j � 	�
it is usually the case that �� has cardinality of less than 	�� atoms�
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� Re�nement

��� Re
nement operators

When generalising an example e relative to background knowledge B� Progol
constructs �i and searches from general to speci�c through the sub�lattice of
single clause hypotheses H such that � � H � �i� This sub�lattice is bounded
both above and below� The search is therefore better constrained than other
general to speci�c searches� such as those in MIS ���
 and FOIL ���
� in which
the sub�lattice being searched is not bounded below�
For the purposes of searching a lattice of clauses ordered by ��subsumption

Shapiro ���
 introduced the concept of re�nement operators� Suppose L is a
�potentially in�nite� set of clauses and C is an element of L� Then the re�nement
operator � is de�ned such that ��C� � L� � is said to be sound if and only if for
each D in ��C� it is the case that C � D� Also ���C� � fCg and D � �i�C�
if and only if there exists D� � �i���C� and D � D� or D � ��D��� The closure
���C� is ���C� � ���C� � ���
According to ��	
 � is complete if and only if for each D in L there is an

alphabetic variant of D in ������ � is �nite if and only if for all C � L the
cardinality of ��C� is �nite� � is proper if and only if for each clause C and
D � ��C� it is the case that C � D� It is shown in ���
 that Shapiro�s � is not
complete� It is also shown that there does not exist � which is �nite� proper and
complete�
Redundancy of re�nement operators is investigated in �	�� �
� The re�nement

operator � is redundant if and only if there exist clauses C�C ��D in L such that
D � ��C� and D � ��C �� and C is not an alphabetic variant of C �� Since both
MIS and FOIL employ redundant re�nement operators� the same clause D can
be reached repeatedly when applying � to various C and C ��

��� The re
nement operator in Progol

The re�nement operator in Progol is designed to avoid redundancy and to main�
tain the relationship � � H � �i for each clause H�
Since H � �i� it is the case that there exists a substitution � such that

H� � �i� Thus for each literal l in H there exists a literal l� in �i such that
l� � l�� Clearly there is a uniquely de�ned subset �i�H� consisting of all l� in
�i for which there exists l in H and l� � l�� A non�deterministic approach to
choosing an arbitrary subset S� of a set S involves maintaining an index k� For
each value of k between 	 and n� the cardinality of S� we decide whether to include
the kth element of S in S�� Clearly� the set of all series of n choices corresponds
to the set of all subsets of S� Also for each subset of S there is exactly one series
of n choices� To avoid redundancy and maintain ��subsumption of �i Progol�s
re�nement operator maintains both k and ��
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De�nition �� Progol re�nement operator� Let h� i�B� e�M and �i be de	
�ned as in De�nition �� and let n be the cardinality of �i� Let k be a natural
number� 	 � k � n� Let C be a clause in Li�M� and � be a substitution such that
C� � �i� Below a literal l corresponding to a mode ml in M is denoted simply
as p�v�� ��� vm� despite the sign of ml and function symbols in a�ml�� A variable
is splittable if it corresponds to a �type or 	type in a modeh or if it corresponds
to a 	type in a modeb� hC �� ��� k�i is in ��hC� �� ki� if and only if either

�� C � � C � flg� k� � k� hl� ��i is in 	��� k� and C � � Li�M� or

�� C � � C� k� � k � 	� �� � � and k � n�

hp�v�� ��� vm�� ��i is in 	��� k� if and only if �� is initialised to �� lk � p�u�� ��� um�
is the kth literal of �i and for each j� 	 � j � m�

�� if uj is splittable then vj
uj � �� else vj
uj � � or

�� if uj is splittable then vj is a new variable not in dom��� and �� � ��fvj
ujg�

In De�nition �� the variables in �i form a set of equivalences classes over the
variables in any clause C which ��subsumes �i� Thus we could write the equiv�
alence class of u in � as �v
u� the set of all variables in C such that v
u is in ��
The second choice in the de�nition of 	 adds a new variable to an equivalence
class �vj
uj � This will be referred to as splitting the variable uj� Note that in
De�nition �� a variable is not splittable if it corresponds to a �type in a modeb
since the resulting clause would violate the mode declaration language L�M� �see
De�nition �	�� The following is an example of variable splitting�

Example �� Applying � in list reversal� Suppose M consists of the following
mode delarations�

modeh���reverse��list�	list�� modeb����list��	intj	list

modeb����any� �any� modeb���reverse��list�	list��
modeb���append��list���int
�	list��

The types and other background knowledge are de�ned as follows�

B �

�������������
������������

any�Term��
list��
��
list��HjT 
�� list�T �
Term � Term�
reverse��
� �
��
append��
�X�X��
append��HjT 
� L	� �HjL�
�� append�T�L	� L��

Let h � �� and i � � and let the example be as below�

e � reverse��	
� �	
��

��



C � �� k�

reverse�D�E�� fD
A�E
Ag �
reverse�D�D�� fD
Ag �
� � �

C � �� k�

reverse�D�E�� D � �F jG
� reverse�G�G� � �
reverse�D�E�� D � �F jG
� reverse�G�H� � � fH
Cg �
reverse�D�E�� D � �F jG
 � �

Figure �� Two applications of ��

In this case �i is as follows�

�i � reverse�A�A� � A � �	
� A � �BjC
� B � 	� C � �
�

reverse�C�C�� append�C� �B
� A�

Let hC �� ��� k�i be in ��h�� �� 	i�� Then all hC �� ��� k�i are shown in the �rst table in
Figure �� Suppose that C � �reverse�D�E� � D � �F jG
�� � � fD
A�E
A�F
B�G
Cg�
k � 
 and hC �� ��� k�i is in ��hC� �� ki�� Then all hC �� ��� k�i are shown in the second
table in Figure ��

By analogy to Shapiro�s � we can talk of the soundness of Progol�s ��

Lemma �
 Soundness of Progol�s �� Let h� i�B� e�M and �i be de�ned as
in De�nition �� and let n be the cardinality of �i� Let k be a natural number�
	 � k � n� Let C be a clause in Li�M� and � be a substitution such that C� � �i�
hC �� ��� k�i � ��hC� �� ki� only if C ��� � �i and C � � Li�M��
Proof� Suppose the lemma is false� In that case there exists hC �� ��� k�i �
��hC� �� ki� and either C ��� �� �i or C � �� Li�M�� But according to De�nition
��� C � � Li�M� or C � � C� in which case also C � � Li�M�� Thus it must be that
C ��� �� �i in which case C � � C � flg and k� � k where hl� ��i is in 	��� k�� But
then according to the de�nition of 	� C ��� � �i which contradicts the assumption
and completes the proof� �

As with Shapiro�s re�nement operator we can de�ne the closure set for Progol�s
�� Let X�Y�Z stand for triples of the form hC� �� ki� Then ���X� � fXg and
Y � �i�X� if and only if there exists Z � �i���X� and Y � Z or Y � ��Z�� The
closure ���X� is ���X� � ���X� � ��� The following example shows that Progol�s
� is not complete due to the choice of ordering of �i�

Example �� Incompleteness of search� Let B contain de�nitions for decre	
mentation �dec�� addition �plus� and the clause mult���X� ��� with appropriate
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mode declarations M and let the example e be the clause mult�	� 	� 	� �� Then
�i is the clause

mult�A�A�A� � dec�A�B�� plus�A�B�A�� plus�B�B�B��

mult�A�B�B��mult�B�B�B��

Given this ordering over �i there will be no element of Progol�s �� containing the
clause

mult�U� V�W �� dec�U�X��mult�X�V� Y �� plus�Y� V�W ��

��� Complexity of �

In order to analyse the complexity of � we introduce an incremental variant of
the Bell number �	�
 from combinatorics� The mth Bell number is the number of
ways that a set S of cardinalitym can be partitioned into non�empty equivalence
classes�

Lemma �� Number of splits of a variable� Suppose that 	 in De�nition
�� has arguments �� k and that the kth literal of �i has m splittable occurrences
of only one variable u� Suppose also that the cardinality of �v
u in � is n� The
number of variants of �� is given by the function s as follows�

s�n�m� �

�
	 if m � �
s�n�m	��n�s�n���m	�� if m � �

Proof� If m � � there is only one substitution� �� � �� If m � � consider the �rst
occurrence of u in lk� In 	 the choice can be to not split u �case �� or to split u
�case ��� In case �� the set of �� variants is f�g crossed with the set of n choices for
v�
u crossed with the set of s�n�m	�� variants for the remaining m	� occurrences
of u in lk� In case �� if the new variable is v then the set of �� variants is f�g
crossed with fv
ug crossed with the set of s�n���m	�� variants for the remaining
m	� occurrences of u in lk� This gives a total of s�n�m	��n�s�n���m	�� variants
of ��� �

A partial tabulation of the function s is shown in Figure ��


Remark �� Bounds on s� Let n�m be natural numbers� nm�s�n�m���n�m�m�
Proof� For m��� n��s�n� ����n�����	� Consider s in terms of the recurrence
nm�nm��n� For all n�� and m�� it is the case that s�n�m�	�n�s�n�m��
s�n�m�m�	�n�s�n�m�m�	�� �

Example �� Suppose in De�nition �� that C � p�V � � and � � fV
Ug and
lk � q�U�U�U� where the last two occurrences of U in lk are 	type� Then in
Lemma �� this gives m��� n��� and s�n�m���� The � variants of lk�� are
q�V� V� V �� q�V� V�W �� q�V�W� V �� q�V�W�W � and q�V�W�Z��

�The Bell function can be expressed simply as B�m
 � s���m
�
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Figure �� A partial tabulation of the function s�

We are now in a position to give a function for the cardinality of ��

Theorem �� The cardinality of �� Let C� �� k and lk be as in De�nition ���
Suppose that lk contains p splittable variables and q non	splittable variables� Let
mx� 	 � x � p� and my� 	 � y � q� denote respectively the number of occurrences
of vx and vy in the splittable and non	splittable variables of lk� Let nx� 	 � x � p�
and ny� 	 � y � q� denote respectively the number of ux and uy such that ux
vx
and uy
vy are in �� Then the cardinality of ��hC� �� ki� is

j��hC� �� ki�j � �!p
x��n

mx
x ��!

q
y��s�ny�my�� � 	�

Proof� In De�nition ��� � chooses between � cases� Since the second choice
produces a unique solution� the cardinality of � is one greater than the cardinality
of the associated function 	� Only the �rst case of 	 is applicable to non	splittable
variables� Thus for each of the mx occurrences of vx in lk there are nx choices
of ux
vx� giving nmx

x variants� The set of all substitutions �� for lk is f�g crossed
with the set of variants for each vx� 	 � x � p crossed with the set of variants
for each vy� 	 � y � q� This gives a total of �!p

x��n
mx
x ��!

q
y��s�ny�my�� di
erent

substitutions �� for the function 	 and the same value plus 	 for the cardinality of
�� �

From Remark �� it can be seen that j��hC� �� ki�j is exponential in p� q� mx and
my� This reiterates the requirement indicated by Theorem �
 that for the sake
of polynomial tractability p�mx and q� my should be bounded respectively by
constants j� and j��
In the implementation of � Progol simply decodes each of the natural numbers

between 	 and j��hC� �� ki�j into clauses and updates � and k appropriately� The
details of this decoding process are omitted�

�� Searching the subsumption lattice

To search the subsumption lattice Progol applies an A��like algorithm ���
 to
�nd a clause C� � � C � �i� with maximal Occam compression �De�nition ���
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The encoding measure is the total number of atom occurrences in a reduced logic
program� Logic programs are reduced by eliminating redundant clauses�

De�nition �	 Redundant clauses� Let C be a clause and T be a set of clauses�
C is redundant in T � C if and only if T j� C�

De�nition �
 Reduced set of clauses� Let T be a set of clauses� T is reduced
i
 T contains no redundant clauses�

Progol�s algorithm for �nding C with maximal Occam compression is Algorithm
�� in Appendix D��� The algorithm searches through the state space de�ned by
elements of ���h�� �� 	i�� A lookahead function hs is used to increase e�ciency
when searching for �variable�chaining� clauses� A clause is variable�chaining if
and only if it contains a chain of variables v�� ��� vn such that v�� vn are �type
and �type respectively in the head of C and each vi� vi�� are �type and �type
respectively in an atom in the body of C� The recursive clause for reversing lists

reverse�A�B�� A � �CjD
� reverse�C�E�� append�E� �A
� B� ���

�see Example ��� is variable�chaining� A clause C is called I"O complete if and
only if each �type variable in the head of C is found in the body of C� Clause ���
is I"O complete given the mode declarations in Example ���

Lemma �� Function hs de�nes I�O complete lookahead� Let �i and s �
hC� �� ki be as in De�nition �� in Section D��� For every I�O complete C � such
that s� � hC �� ��� k�i � ���hC� �� ki� it is the case that jC �j � jCj � hs�
Proof� By mathematical on induction on hs� Suppose v is in the body of C�
then hs � � and the lemma holds in the base case� Suppose� by mathematical
induction� that for all I�O complete C � and for all sd � hCd� �d� kdi for which
hsd � d it is the case that jC �j � jCdj � hsd and suppose that there exists such
sd � ��s�� According to De�nition �� either Cd � C and �d � � in which case for
all I�O complete C � it is the case that jC �j � jCj � hs � d or else Cd � C � flg
and jC �j � jCj � �hsd �	� � hs� This proves the step and completes the proof� �

���� Correctness and time complexity

Note that in order to ensure polynomial tractability of Algorithm ��� the user is
required to provide a bound c on the cardinality of the clause body�

Theorem �� Correctness of Algorithm ��� Let E� h� i� B� e�M��i� c be as
in De�nition ��� Let S � ���h�� �� 	i� and Sc be the set of all elements s of S
such that cs � c� If s � hC� �� ki then C�s� � C� We say that clause C explains
example e if and only if B � C � e �h � and B � C � E �h �� If Sc does not
contain any s such that C�s� explains e and fs � � then Algorithm �� returns
�no compression�� Otherwise Algorithm �� returns s � Sc such that C�s� explains
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e and there does not exist s� � Sc for which C�s�� explains e and fs� � fs�
Proof� By contradiction� Assume the theorem is false� Then either �a� the
algorithm does not terminate or �b� there exists s � Sc such that C�s� explains
e� fs � � and �no compression� is returned or �c� s is returned and either C�s�
does not explain e or fs � � or �d� s is returned and C�s� explains e and fs � �
but there exists s� � Sc for which C�s�� explains e and fs� � fs�

First consider �a�� Since � �De�nition ��� either adds another literal or moves
forward by one through �i� there can only be a �nite number of elements of s � Sc�
In each cycle at least one of these� say s� is transferred from Open to Closed in
steps � and � and never reappears in Open again due to the construction in step ��
Open will never contain elements other than those in Sc due to the third condition
in the predicate prune� Thus there are only a �nite number of cycles and each
operation terminates in �nite time� This refutes �a��

Therefore instead suppose �b� there exists s � Sc such that C�s� explains e�
fs � � and �no compression� is returned in step �� But step � can only be entered
after step �� in which case if Open � � then terminated must have been false
and therefore Closed contained no s for which C�s� explained e and fs � �� But
if there exists s � Sc for which C�s� explains e and fs � � then there must be
s� � Sc for which prune�s�� was true� since otherwise s would eventually have
been transferred to Closed� But the �rst condition of prune could not have been
true of s� since otherwise at worst s� would have succeeded as best in terminated�
The second condition of prune could not have been true of s� since if gs� � � then
also gs � � and thus fs � �� The third condition of prune could not be true either
since if cs� � c then either C�s�� � C�s� or C�s� �� Sc� This refutes �b��

Instead suppose �c� s is returned and either C�s� does not explain e or fs � ��
But if s is returned in step � then terminated must be true in which case ns � �
and fs � �� For all s � S� by the construction of �i �De�nition ��� and the
soundness of � �De�nition ��� B � C�s� � e �h �� Also since ns � � it follows
that B � C�s� � E ��h �� Therefore C�s� explains e and f�s� � �� This refutes
�c��

Lastly suppose �d� s is returned and C�s� explains e and fs � � but there
exists s� � Sc for which C�s�� explains e and fs� � fs� But s� cannot be in Closed
since s �best�Closed� and therefore fs � f �s� Therefore on return from step �
there must exist s�� in Open for which s� � ���s���� But in that case according to
the terminated predicate fs � gs�� � gs� � fs�� This refutes �d� and completes the
proof� �

In the worst case Algorithm �� will consider all elements of Sc in Theorem ���

Theorem �
 Cardinality of Sc� Let i��i� Sc� c be as in De�nition ��� Let
j�� j� be as in Theorem �� and let j � j� � j�� Let jSj denote the cardinality of
any set S� jScj � j�ijc��j�c� 	�j �
Proof� The elements s � hC� �� ki of Sc are all those s � ���h�� �� 	i� for which
jCj � �c � 	�� Since C� � �i we can view the construction of s as the choice
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�with possible repeats� of c�	 elements from �i followed by the choice of �� It is
simplest to treat C� �with repeat literals� as though it were a single atom and use
the bounds in Remark �� to calculate the worst case for the number of variants
of �� In this case there are at most j�ijc�� ways of choosing the elements of C�
and j�c� 	�j ways of choosing �� Thus jScj � j�ijc��j�c� 	�j � �

From Theorem �
 and �� we �nd that jScj is of order O�rjM j�ij�c��	�� Clearly�
for tractability i� j� c must be small constants�

���� Cover set algorithm

Progol uses a simple cover set algorithm much like that employed in Michalski�s
AQ family of algorithms ���
� It repeatedly generalises examples in the order
found in the Progol source �le and adds the generalisation to the background
knowledge� Examples which are redundant relative to the background knowledge
are then removed �redundancy is based on De�nition ���� The cover set algorithm
is given in Appendix D��� Clearly Algorithm D�� terminates in at most jEj
iterations�
Note that each clause is un#attened before being added to the background

knowledge� If� as in Prolog� equality is assumed to be completely de�ned using
only the axiom of identity �
x��x � x�� then un#attening has no e�ect on the
Herbrand models of a logic program� However� it does improve its readability�
For instance� clause ��� in Section 	� can be un#attened to the following simpler
clause�

reverse��AjB
� C�� reverse�B�D�� append�D� �A
� C��

Note that the use of modeb declarations for ��� in Example �� followed by the
use of un#attening in Algorithm D�� allows Progol to search through the term
structure of hypothesised clauses� This is despite the fact that Progol�s re�nement
operator �De�nition ��� considers only variable"variable substitutions which map
hypothesised clauses to subsets of �i�

�� The Progol system

Progol was written in C by the author of this paper� Progol version ��	 source
code� example �les and manual pages are freely available �for academic research�
by anonymous ftp from ftp�comlab�ox�ac�uk in directory
pub"Packages"ILP"progol��	�
The design methodology for Progol was to present the user with a standard

Prolog interpreter augmented with inductive capabilities� The syntax for ex�
amples� background knowledge and hypotheses is Dec�	� Prolog� with the usual
augmentable set of pre�x� post�x and in�x operators� Headless Horn clauses�
representing constraints are used to represent negative examples and constraints�
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These are stored internally as clauses with head �false�� Thus the following state�
ment can be placed in the Progol source �le�

� �black�X�� white�X��

This is stored internally as the following de�nite clause�

false � �black�X�� white�X��

In this way both the testing of negative examples and of general constraints
reduces to seeing whether �false� is provable� Headless clause constraints can be
learned from ground headless unit clauses by use of a modeh for the predicate
�false�� An example of this can be found in the Progol��	 distribution dataset
�animals�pl��
The standard library of primitive predicates described in Clocksin and Mellish

��
 is built into Progol and available as background knowledge� Thus the following
command�line can be given to Progol when using the in�x predicate ���� for
learning ranges of integers�

j� modeh�	�p��int��� modeb��� int �� �int�� modeb����int ��  int��

The Progol prompt is j� and int is a built�in single arity predicate which is
true for all integers� Note that Progol queries are terminated by ��� rather than
the usual ��� in Prolog� This allows queries to be distinguished from assertions�
Assertions terminated by ��� can also be made at the Progol prompt level� The
user can request examples to be generalised from the prompt by terminating
the example clause by a ���� Unless the predicate �search� is executed �rst� a ���
statement will simply show the user the clause �i for the example� Thus the
mode declarations above will allow the following interaction�

j� p����
�Most speci�c clause is

p�A� �� ���A� ���A� ���A� A���� A��
� A����

In this �� clause the modeb declarations �given above� for ���� are used� In step
� of Algorithm �� the goals X �� � and � �� Y are both recalled � times and
succeed with substitutions ����� for X and ��
�� for Y� The  int place�markers
are replaced by ����� and ��
�� respectively and the �int place�marker is replaced
by the unique variable A using the hash function described in Algorithm ���
Although Progol can be used interactively� it is often more convenient to run

it in batch mode� In this case� when called from the operating system shell�
Progol is given the name of the example �le as an argument� Progol then simply
generalises every predicate for which a modeh is declared and shows the results
as output�
Progol can learn ranges and functions with numeric data� These can be either

integer or #oating point by simply making use of the built�in predicates �is�� ����
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����� etc� This is best exempli�ed in the Progol��	 dataset order�� in which
qualitative regression is applied in conjecturing Newton�s inverse square law from
arti�cial #oating point data�
The choice of engineering a complete Prolog interpreter was taken in order

to make induction a �rst�class and e�cient operation on the same footing as
deductive theorem proving� This allows implementation of low�level operations
such as depth�bounding of the theorem prover and rapid virtual assertion and
retraction of clauses into the clause set�

�� Results

Results of a series of experiments involving Progol in learning to predict mu�
tagenic molecules can be found in ���� ��� 
�
� A description of Progol doing
qualitative regression can be found in ��	
� Qualitative regression is carried out
by using mode declarations to de�ne a family of � di�erent functions �linear�
polynomial in one term and exponential� and using these in competition to �t
the data� The equation solver is supplied as user�de�ned background knowledge�
Appendix E gives a table of runtimes on a SPARCstation 	� for learning

the various examples in the distribution version of Progol��	� The numbers of
clauses in E�� E�� B and H are also given for each dataset� Note that the
datasets �animals�� �exp�� �family� and �set� involve learning a series of related
predicates� These runtimes are comparable with those of FOIL ���
� despite
the fact that FOIL does incomplete heuristic search to �nd clauses� FOIL also
uses extensional background knowledge rather than the intensional background
knowledge of Progol�

�� Conclusion

This paper traces the line of development followed by the author in investigating
induction as the inverse of deduction� It has been shown that the idea of inverting
resolution proofs used in Duce and Cigol can be greatly simpli�ed by considering
this as a special case of inversion of entailment� However� the notion of inverting
entailment is of a more fundamental nature than that of inverting proof� since
it is based on the model�theory which underlies proof� This approach has led
to the development of a new state�of�the�art ILP system called Progol� which is
available for academic research purposes by anonymous ftp �see Section 		�� For
each example Progol develops a most speci�c clause �i within the user�de�ned
mode language� and uses this to guide an A��like search through clauses which
subsume �i� Each invocation of the search returns a clause which is guaranteed
to maximally compress the data� Despite the admissibility of this search� the
learning times in Appendix E are comparable with FOIL� an algorithm which
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carries out a truncated heuristic search and allows only extensional background
knowledge�
Figure � in Section � shows various ways in which Progol could be made more

powerful� At present Progol can only deal e�ectively with the �rst and third form
of �� If Progol could prove not only positive ground facts but also negative ones
then it would be possible to construct � in the form of the second entry in Figure
�� This would have applications in theory revision� However� for the purposes of
theory revision� Progol would need to have a strategy for specialising over�general
clauses� The construction of sub�saturants �Section 
�	� would allow Progol to
�nd all generalisations of recursive clauses� such as the one in the fourth entry
of Figure �� Both the second and fourth form of generalisation in Figure � will
lead to multiple de�nite � clauses� Dealing with the multiplicity of � clauses
will require improvements in Progol�s search techniques� The incompleteness of
the present search �see Example ��� also needs to be addressed�
De�nition � suggests a way in which Progol could be made to learn e�ectively

when provided with only positive example data� This would have real world
applications in areas such as natural language learning� in which it is common to
�nd positive�only data sources�
No learnability results have yet been shown for Progol� U�learnability �Ap�

pendix B� o�ers a promising direction for such results�
The author believes that inverse entailment o�ers many new avenues in the

rapidly maturing research area of Inductive Logic Programming�
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Appendixes

A De�nitions from logic

A�� Formulae in 
rst order predicate calculus

A variable is represented by an upper case letter followed by a string of lower case
letters and digits� A function symbol is a lower case letter followed by a string of
lower case letters and digits� A predicate symbol is a lower case letter followed
by a string of lower case letters and digits� A variable is a term� and a function
symbol immediately followed by a bracketed n�tuple of terms is a term� Thus
f�g�X�� h� is a term when f � g and h are function symbols and X is a variable�
As in Prolog� integers� ��
� and ��� are function symbols and if t�� t�� � � � are terms
then ����t�� t�� can equivalently be denoted �t�jt�
 and ����t������t�� ������tn� �
����� can
equivalently be denoted �t�� t�� ��� tn
� A predicate symbol immediately followed by
a bracketed n�tuple of terms is called an atomic formula� or atom� Every atom is
a well�formed formula �w��� If W and W � are w�s then W �not W �� W �W � �W
and W ��� W �W � �W or W �� and W �W � �W implied by W �� are w�s� W �W �

is a conjunction andW �W � is a disjunction� If v is a variable andW is a w� then

v�W �for all v W � and �v�W �there exists a v such that W � are w�s� v is said to
be universally quanti�ed in 
v�W and existentially quanti�ed in �v�W � The w�
W is said to be function�free if and only ifW contains no function symbols� Both
A and A are literals whenever A is an atom� In this case A is called a positive
literal and A is called a negative literal� A set of literals is called a clause�
The empty clause is represented by �� A clause represents the disjunction of its
literals� Thus the clause fa�� a�� ��ai� ai��� ��� ang can be equivalently represented as
�a��a����ai�ai������an� or a�� a�� ��� ai� ai��� ��� an� All the variables in a clause
are implicitly universally quanti�ed� A Horn clause is a clause which contains
at most one positive literal� A de�nite clause is a clause which contains exactly
one positive literal� A positive literal in either a Horn clause or de�nite clause is
called the head of the clause while the negative literals are collectively called the
body of the clause� A set of clauses in which no pair of clauses share a common
variable is called a clausal theory� The empty clausal theory is represented by
� A clausal theory represents the conjunction of its clauses� Thus the clausal
theory fC�� C�� ��� Cng can be equivalently represented as �C��C�����Cn�� Every
clausal theory is said to be in clause�normal form� Every w� can be transformed
to an equivalent w� in clause normal form� If C � 
l� � ��ln is a clause then
C � �l� � �� � ln� In this case C is not in clause normal form since the variables
are existentially quanti�ed� C can be put in clause normal form by substituting
each occurrence of every variable in C by a unique constant not found in C� The
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process of replacing �existential� variables by constants is called skolemisation�
The unique constants are called skolem constants� A set of Horn clauses is called
a logic program� Apart from representing the empty clause and the empty theory�
the symbols � and represent the logical constants False and True respectively�
Let E be a w� or term� vars�E� denotes the set of variables in E� E is said to
be ground if and only if vars�E� � ��

A�� Substitutions and models

Let � � fv�
t�� ��� vn
tng� � is said to be a substitution when each vi is a variable
and each ti is a term� and for no distinct i and j is vi the same as vj� The set
fv�� ��� vng is called the domain of �� or dom���� and ft�� ��� tng the range of �� or
rng���� Lower�case Greek letters are used to denote substitutions� Let E be a w�
or a term and � � fv�
t�� ��� vn
tng be a substitution� The instantiation of E by
�� written E�� is formed by replacing every occurrence of vi in E by ti� Atom a
��subsumes atom b� or a � b if and only if there exists a substitution � such that
a� � b� Clause C ��subsumes clause D� or C � D if and only if there exists a
substitution � such that C� � D� The Herbrand universe of the w�W is the set of
all ground terms composed of function symbols found in W � The Herbrand base
of the w� W is the set of all ground atoms composed of predicate and function
symbols found in W � An interpretation is a total function from ground atoms to
f�� g� A Herbrand interpretation I of w� W is an interpretation whose domain
is the Herbrand base of W � I can equivalently be represented as a subset of the
atoms a in the Herbrand base of W for which I�a� � � Below all interpretations
I are assumed to be Herbrand� The atom a is true in I if I�a� � and false
otherwise� The w� W is true in I if W is false in I and is false otherwise� The
w� W �W � is true in I if both W and W � are true in I and false otherwise� The
w� W �W � is true in I if eitherW or W � is true in I and false otherwise� The w�
W �W � is true in I if W �W � is true in I and false otherwise� If v is a variable
and W is a w� then 
v�W is true in I if for every term t in the Herbrand universe
of W the w� Wfv
tg is true in I� Otherwise 
v�W is false in I� If v is a variable

and W is a w� then �v�W is true in I if 
v�W is true in I and false otherwise�
Interpretation M is a model of w� W if and only if W is true in M � A w� W is
satis�able if there exists a model of W and unsatis�able otherwise� Consequently
W is unsatis�able if and only ifW j� �� Herbrand�s theorem states that a w� W
is satis�able if and only if W has a Herbrand model� Every logic program P has
a unique least Herbrand modelM such that M is a model of P and every atom a
is true inM only if it is true in all Herbrand models of P � Let W and W � be two
w�s� We say that W semantically entails W �� or W j� W � if and only if every
model of W is a model of W �� Let X� Y and Z be w�s� Then according to the
Deduction theorem X � Y j� Z if and only if X j� Y �Z� Let X

Y
be an inference

rule� Then X
Y
is said to be sound if and only if X j� Y � Suppose I is a set of

inference rules containing X
Y
and W�W � are w�s� Then W �I W � if W � is formed
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by replacing an occurrence of X in W by Y � Otherwise W �I W � if W �I W ��

and W �� �I W �� We say that W syntactically entails W � using inference rules
I� if and only if W�IW �� The set of inference rules I is said to be deductively
sound and complete if and only if each rule in I is sound and W�IW � whenever
W j� W �� Let W and W � be two w�s� We say that W is more general than W �

�conversely W � is more speci�c than W � if and only if W j� W ��

A�� Resolution

The substitution � is said to be a variable renaming if and only if each u � dom���
and v � rng��� are variables� LetW andW � be two w�s� If there exists a variable
renaming � such that W� �W � then W�W � are said to be alphabetic variants of
each other� W�sW�W � are said to be standardised apart if and only if there exists
a variable renaming � � fu�
v�� ��un
vng � vars�W � � vars��� andW� � W �� The
substitution � is said to be the uni�er of the atoms a and a� whenever a� � a���
� is the most general uni�er �mgu� of a and a� if and only if for all uni�ers � of
a and a� there exists a substitution 	 such that �a��	 � a�� Let C and D be
clauses and a be an atom� The sound inference rule

C � a D � a
C �D

is called resolution� �C�D�� is said to be the resolvent of the clauses C�fag and
D�fa�g whenever C and D are standardised apart and � is the mgu of the atoms
a and a�� Let T be a clausal theory� Robinson ���
 de�ned the function Rn�T �
recursively as follows� R��T � � T � Rn�T � is the set of all resolvents constructed
from pairs of clauses in Rn���T �� Robinson showed that T is unsatis�able if and
only if there is some n for which Rn�T � contains the empty clause ����

B Hypotheses
 probabilities and U�learnability

B�� U	learnability

The following is a variant of the U�learnability framework presented in ���� ��
�
The teacher starts by choosing distributions F and G from the family of distri�
butions F and G over concept descriptions H �w�s with associated bounds for
time taken to test entailment� and instances X �ground w�s� respectively� The
teacher uses F and G to carry out an in�nite series of teaching sessions� In each
session a target theory T is chosen from F � Each T is used to provide labels
from f ��g �True� False� for a set of instances randomly chosen according to
distribution G� The teacher labels each instance xi in the series hx�� ��� xmi with
if T j� xi and � otherwise� An hypothesis H � H is said to explain a set of

examples E whenever it both entails and is consistent with E� On the basis of the

��



p(H)

1

0

H

Figure �� Prior and posterior probabilities of hypotheses�

series of labelled instances he�� e�� ��� emi� a Turing machine learner L produces a
sequence of hypotheses hH��H�� ��Hmi such that Hi � H explains fe�� ��� eig� Hi

must be suggested by L in expected time bounded by a �xed polynomial func�
tion of i� The teacher stops a session once the learner suggests hypothesis Hm

with expected error less than � for the label of any xm�� chosen randomly from
G� hF�Gi is said to be U�learnable if and only if there exists a Turing machine
learner L such that for any choice of 	 and � �� � 	� � � 	� with probability at
least �	 � 	� in any of the sessions m is less than a �xed polynomial function of
�
�
and �

�
�

B�� Bayesian interpretation of setting

Figure � shows the e�ect E � fe�� ��eig has on the probabilities associated with
hypotheses in H� The learner�s hypothesis language H is laid out along the X�
axis with prior probability p�H� � F �H� for H in H measured along the Y�axis�
where X

H�H

p�H� � 	�

The descending dotted line in Figure � represents a bound on the prior proba�
bilities of hypotheses before consideration of examples E� The hypotheses HE

�HE � H� which explain E are marked as vertical bars� The prior probability of
E� p�E�� is simply the sum of probabilities of hypotheses in HE� The conditional
probability p�EjH� is 	 in the case that that H explains E and � otherwise� The
posterior probability of H is now given by Bayes theorem as

p�HjE� �
p�H�p�EjH�

p�E�

��



With reference to Figure �� for an hypotheses H which explains all the data�
p�HjE� will increase monotonically with increasing E� Also for two di�erent
hypotheses H�� H� which explain E the following holds�

p�H�jE�

p�H�jE�
�
p�H��

p�H��
�
�

C Subsumption and least general generalisa�

tion

In the late 	�
��s the success of Robinson�s ���
 resolution procedure produced
considerable interest in the problem of inducing �rst�order formulae� Both Meltzer
���
 and Popplestone ���
 carried out initial investigations into generalisation of
ground formulae by replacement of constants with variables� In implementing his
approach Meltzer decided to bound the number of resolutions involved in check�
ing any hypothesis against examples� This was an important innovation which is
now being used within Progol �Section 		��
In an alternative approach Reynolds ��	
 and Plotkin ��

 investigated the

problem of �nding least general generalisations �lggs� of atoms� According to
Plotkin ���
�

The work started with a suggestion by R�J� Popplestone �private com�
munication� that� just as the uni�cation algorithm was fundamental
to deduction� so might a converse be of use in induction�

The relationship of lgg to uni�cation is depicted in Figure 
� Atom g is a common
generalisation of atoms a and b if an only if there exist substitutions 
g

� and
�g

� such that a � g
g
� and b � g�g

�� The atom lgg�a� b� is the least general
generalisation of a and b if and only if lgg�a� b� is a common generalisation of a
and b and for each common generalisation g of a and b there exists a substitution
	g such that lgg�a� b� � g	g� The common instance i and most general instance
are similarly de�ned for a and b �see Figure 
�� In the case of the most general
instance i of a and b Robinson ���
 calls 
i�i the most general uni�er of a and
b� Robinson describes an algorithm for constructing the most�general uni�er of
two atoms� Robinson�s uni�cation algorithm is the basis of resolution theorem
proving� Plotkin and Reynolds describe an e�cient algorithm for computing the
least general generalisation of two atoms�
�a
 is the equivalence class of all atoms which are variable renamings of a�

Reynolds showed that the set of all equivalence classes of atoms augmented by
the symbols � and � form a non�modular lattice� Thus� �a
 u �b
 � �lgg�a� b�

and �a
t �b
 � �mgi�a� b�
� where u and t are both commutative and associative�
though neither distributes over the other�
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Figure 
� Relationship of lgg and mgi�

In ��

 Plotkin extended the investigation to clauses ordered by ��subsumption�
Clause C ��subsumes clause D� or C � D if and only if there exists a substitu�
tion � such that C� � D� Just as with atoms� clause G and I are respectively
a common generalisation and a common instance of C and D if and only if
G � C�D and C�D � I� For clauses C and D there is a least general gen�
eralisation lgg�C�D� and most general instance mgi�C�D�� both unique up to
renaming� such that for every common generalisation G and common instance I
of C and D it is the case that G � lgg�C�D� and mgi�C�D� � I� The cardinality
of the least general generalisation of two clauses is bounded by the product of
the cardinalities of the two clauses�
Plotkin ��

 went on to de�ne the lgg of two clauses relative to clausal back�

ground knowledge B� The relative least general generalisation of clauses �rlggB�
is potentially in�nite for arbitrary B� When B consists of ground unit clauses
only the rlggB of two clauses is �nite� However the cardinality of the rlggB of
m clauses relative to n ground unit clauses has worst�case cardinality of order
O�nm�� making the construction of such rlggB�s intractable�

D Progol algorithm

D�� Construction of most	speci
c clause

Algorithm �� Algorithm for constructing �i�

�� Given natural numbers h� i� Horn clauses B� de�nite clause e and set of
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mode declarations M �

�� Let k � �� hash � Terms � N be a hash function which uniquely maps
terms to natural numbers� e be the clause normal form logic program a �
b� � �� � bn� �i � hi and InTerms� ��

�� If there is no modeh in M such that a�m� � a then return �� Otherwise let
m be the �rst modeh declaration in M such that a�m� � a with substitution
�h� Let ah be a copy of a�m� and for each v
t in �h if v corresponds to a
�type in m then replace v in ah by t otherwise replace v in ah by vk where
k � hash�t� and add v to InTerms if v corresponds to �type� Add ah to
�i�

�� If k � i return �i else k � k � 	�

�� For each modeb m in M let fv�� ��� vng be the variables of �type in a�m�
and T �m� � T� � �� � Tn be a set of n	tuples of terms such that each Ti
corresponds to the set of all terms of the type associated with vi in m �term t
is tested to be of a particular type by calling Prolog with type�t� as goal�� For
each ht�� ��� tni in T �m� let ab be a copy of a�m� and � � fv�
t�� ��� vn
tng�
If Prolog with depth	bound h succeeds on goal ab� with the set of answer
substitutions %b then for each �b in %b and for each v
t in �b if v corresponds
to a �type in m then replace v in ab by t otherwise replace v in ab by vk
where k � hash�t� and add v to InTerms if v corresponds to 	type� Add ab
to �i�

�� Goto step ��

D�� A�	like algorithm for 
nding clause with maximal

compression

Firstly we de�ne some auxiliary functions used in Algorithm ���

De�nition �� Auxiliary functions� Let the examples E be a set of Horn
clauses� Let h� i�B� e�M��i be as in De�nition �� in Section ��� and let C� k� �
be as in De�nition �� in Section ����

d��v� �

�����
����
� if there is no 	type variable in the head of �i

� if v is 	type in the head of �i

� if v is not in �i

�minu�Uvd
��u�� � 	 otherwise

where Uv are the 	type variables in atoms in the body of C which contain �type
occurrences of v� Below state s has the form hC� �� ki� c is a user	de�ned param	
eter for the maximal clause body length� jSj denotes the cardinality of any set
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S�

ps � jfe � e � E and B � C � e �h �gj

ns � jfe � e � E and B � C � e �h �gj

cs � jCj � 	

Vs � fv � u
v � � and u in body of Cg

hs � minv�Vsd
��v�

gs � ps � �cs � hs�

fs � gs � ns

best�S� is a state s � S which has cs � c and for which there does not exist s� � S
for which fs� � fs�

prune�s� �

�����
����

true if ns � � and fs � �
true if gs � �
true if cs � c
false otherwise

terminated�S� S�� �

���
��

true if s � best�S�� ns � �� fs � � and
for each s� in S� it is the case that fs � gs�

false otherwise

Algorithm �� Algorithm for searching � � C � �i�

�� Given h�B� e��i as in De�nition ���

�� Let Open � fh�� �� 	ig and Closed � ��

�� Let s � best�Open� and Open � Open�fsg�

�� Let Closed � Closed �fsg�

�� If prune�s� goto ��

�� Let Open � �Open���s���Closed�

�� If terminated�Closed�Open� then return best�Closed��

�� If Open � � then print �no compression� and return he� �� 	i�

�� Goto ��
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D�� Progol
s cover set algorithm

De�nition �� Un�attening� Let C � h� X�Y be a de�nite clause in which
X � �s� � t�� ��� sn � tn� is a conjunction of atoms with predicate symbol ��� and
Y is a conjunction of atoms with predicate symbols other than ���� The clause
C � � h� � Y � is called the un�attening of C if and only if C � is derived from C
by successively resolving away each si � ti in X with the clause �U � U ���

Algorithm �� Cover set algorithm

�� h� i�B�M are given as in Theorem �� and E is the subset of B corresponding
to atoms in modeh declarations in M �

�� If E � � then return B�

�� Let e be the �rst example in E�

�� Construct �i for e using Algorithm ���

�� Construct state s from �i using Algorithm ���

�� Let C � be the un�attening of C�s� �De�nition ����

�� Let B � B � C ��

�� Let E� � fe � e � E and B � e �h �g�

�� Let E � E � E��

��� Goto ��
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E Progol�s runtimes

Data set Predicate jE�j jE�j jBj jHj Time �sec�
animals false �� 	
 	�� 
 �����

class 	
 
 	�� � ��	��
append append 	� � � � ��	��
arch arch � � �� 	 ��	��
chess move �� 	� �� 		 �����
cyclic cyclic � � 
� 	 ��	��
delete delete � 
 � � ���
�
even even 	
 	� � � ���	

exp plus 
 � 	� � ��	��

mult 
 �� 	� � �����
exp � � � � ��	��

family parent of 		 � 
	 � ���


grandfather of 	� � �� 	 ��	��
grandparent of 	� 
 �	 	 ���



grammar s � � 	� 	 ��		

krki illegal ��	 
�� �	 � 	����	
last last � � � � ���


min min 	� 
 � � 	��
�
nim won 	
 � 	� 	 ��	��
order� f 	� � 	� 	 �����
order	 f 	� � 	� 	 �����
order� f � � 	� 	 �����
order� f � � 	� 	 ��
�	
order� f 	� � 	� 	 	����
parity� parity 	
 	
 		 	 	�	��
qsort qsort 		 	� � � ���
�
range inrange � � � � ���


reverse reverse 	� � � � ��	��
set member 	
 � �� � ��	��

pair � � 	
 � �����
subset 	� � � � �����

setuni setuni 	� 	� � � �����
sumx sumx � � � � �����
train eastbound � � ��� 	 ��	��
utube utube � 	� 	�� 	 	�
��

��


